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On the Existence of Visual
Technical Patterns in the UK
Stock Market

Epwarp R. DAwsoN AND JaMES M. STEELEY*

1. INTRODUCTION

Technical trading patterns are used by analysts to forecast stock
market prices using past prices and a range of summary statis-
tics about trading activity. These patterns that rely on visual
inspection of graphs and the identification of certain geometric
patterns in the data are viewed by many as the original form of
security analysis, dating back to a time before the regular
disclosures of financial information, and probably to the earliest
days of the oldest stock markets. Academic interest in the value
of forecasting stock prices followed the publication of two
papers, Roberts (1959) and Osborne (1959), that both
suggested that stock market prices were indistinguishable from
a series of cumulated random numbers. If stock prices are
random, then there would be no value in attempting to forecast
them, by any means. The market would be, in current
language, efficient.

There followed a flurry of academic papers that tested either
the random behaviour of prices, the value of technical trading
rules, or both. In the US stock market, Alexander (1961 and
1964) and Fama and Blume (1966) for example, suggested that
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264 DAWSON AND STEELEY

filter rules, where investors trade in response to past price
movements of certain sizes (filters), could not earn excess
returns. In the UK, papers by Dryden (1970) and Cunningham
(1973) reached similar conclusions. In general, these early
studies supported market efficiency.

More recently, the efficient markets hypothesis has been
challenged by an increasing number of studies that suggest
that stock returns are not fully explained by common measure
of risk. Various return ‘anomalies’ have been identified relating
to calendar periods, such as those across weekends and turns of
the year.! Variables such as market-to-book ratio and size have
been shown to explain expected returns,” while other studies
have documented predictability in returns measured across a
variety of horizons.”

Such evidence of return predictability led to a renewed interest
in examining the value of technical analysis. Sweeney (1988)
re-examined the data used by Fama and Blume (1966). They
had found filter rules applied to 15 of the 30 Dow Jones stocks
earned excess returns over buy-and-hold alternatives. Sweeney
found that 14 of these 15 stocks still produced excess returns for
a number of years following the end of the Fama and Blume
sample. Moreover, these returns would exceed the commission
levels of some traders (floor brokers). Brock et al. (1992)
examined moving average and trading range break-out trading
rules using US data from 1897 to 1986 and found that these
could produce excess returns. However, the results in the paper
have recently been challenged by Sullivan et al. (1999).
They argue that trading rules are subject to survivorship
bias as only those that have been perceived to perform well
continue to be examined. If these rules are a small subset of all
possible rules, and by chance some rules will always appear to
outperform, the results of such trading rule tests will be
biased in favour of the rules. They show that the results of Brock
et al. are substantially weakened when this bias is corrected,
and also when the tests are repeated out-of-sample. Moreover,
adjustments for transactions costs, not included by Brock et al.,
weaken the results still further.

A similar conclusion was reached by Hudson et al. (1994),
who replicated the Brock et al. analysis on the UK stock market
between 1935 and 1994, and found that although the trading

© Blackwell Publishing Ltd 2003



VISUAL TECHNICAL PATTERNS 265

rules do have predictive ability, obtaining returns in excess of
a buy and hold strategy was unlikely. Recent studies of filter
rules in the UK stock market by Sauer and Chen (1996) and
Chelley-Steeley and Steeley (1997) also suggest that filter rules
could not earn profits in excess of transactions costs, despite the
often strong predictability in observed returns. Goodacre et al.
(1999) examined the CRISMA trading system, which is a
package of trading rules (Cumulative volume, Relative
Strength, Moving Average), on UK data over the period 1987
to 1996 and again found little evidence of excess returns after
accounting for risk and transactions costs.

In recent years, the examination of technical trading rules has
moved away from conducting tests of the existence of excess
returns from applying relatively simple rules to (i) choosing an
optimal trading rule, and (ii) testing the predictive ability of the
more visual (and so less easily mathematically formulated) rules.
To search for optimal trading rules, use has been made of
genetic algorithms, which allow the trading system to ‘learn’
the rules to apply rather than have them exogenously specified.
Allan and Karjalainen (1999) applied genetic algorithms to
trading rule learning for the S&P 500 index. They found that
their endogenous rules could not outperform buy-and-hold
alternatives when transactions costs were factored in. Skouras
(2001) has shown that learned trading rules can outperform
those considered by, for example, Brock et al. (1992).

Alongside the mechanical trading rules such as moving
averages and filter rules, technical analysts (or Chartists as they
are often known) make wider use of charts of price and volume
data. In addition to the information provided by mechanical
rules, they search out a variety of geometric patterns in the
data. Perhaps the best known of these patterns is the ‘head-and-
shoulders’ pattern that comprises three successive peaks in the
price history where the middle peak (‘head’) is above the first
and last peak (‘shoulders’). This pattern is interpreted as a
forecast of a subsequent fall in prices. Osler and Chang (1995)
find head-and-shoulders patterns in exchange rate data using a
computerised method that finds local extrema by a ‘zigzagging’
technique. Once one extremum was found neighbouring extrema
were classified as such if a minimum percentage price difference
existed between the two. They found that significant profits, even
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after adjustment for interest rate differentials, risk and
transaction costs, could be made on dollar-yen and dollar-
mark transactions. This was not the case for dollar-sterling,
dollar-franc, dollar-Swiss Franc and dollar-Canadian dollar.

This idea of formally identifying technical trading patterns
has been recently applied to the US stock market by Lo et al.
(2000). Their study is different from that of Osler and Chang in
three main ways. First, they examine a set of 10 visual patterns
commonly used by technical analysts, including the head-and-
shoulders pattern. Second, they search for the patterns in
smoothed data rather than the raw data. Third, although they
compare the distributions of returns conditioned on patterns
with unconditional returns, they do not examine whether these
difterences could produce economic profits.

Our aim in this paper is to replicate and extend the work of
Lo et al. (2000) using data on the UK market. The Lo et al.
(2000) study is, in fact, similar to an earlier UK study by Girmes
and Damant (1975). Girmes and Damant identified head-and
shoulders patterns in stock price series that had been smoothed
using a gradient smoothing technique. They found five times as
many patterns in their actual data than in corresponding
random data. By replicating the Lo et al. (2000) study, which
considers a wider range of technical patterns, and an alternative
smoothing technique, it is possible to both extend and update
that earlier UK study. In addition, it is interesting to know
whether such patterns as were found for the US market in
recent years also exist in the UK market, and whether returns
distributions are influenced by them. This paper also provides
further validation of the specific smoothing techniques used
by Lo et al. (2000) to ‘clean’ the data prior to searching for
patterns, and as a replication study can inform the issue of
data-snooping biases, which can affect empirical work. Finally,
as the simulations required to provide control samples take
several days of computer time each, even on the fastest available
machines, the additional evidence regarding the value of
technical patterns may caution against too hasty conclusions
being drawn.

We find evidence in the UK market of the technical patterns
of the kind that analysts seek in their charts. The different
patterns occur with different frequencies to each other and in

© Blackwell Publishing Ltd 2003



VISUAL TECHNICAL PATTERNS 267

different relativities to the frequencies found in the US market.
However, the frequency of patterns overall in both markets is
very similar, with the frequency in the US market being slightly
higher. The pattern frequencies are reasonably stable across
time with only the smallest size quintile of firms showing system-
atically fewer patterns of certain kinds. We also find that the
signs of returns conditioned on patterns respond as Chartists
would predict, and that conditional returns are in many cases
distributed differently from unconditional returns. However, in
an extension of the work of Lo et al. (2000), we examine market-
adjusted conditional returns and find that the evidence that
technical patterns are conditioning returns is much weaker.
Overall, our results show less evidence that returns are being
influenced by technical patterns than for the US. Both our study
and that of Lo et al. (2000) indicate, however, that economic
profits arising from the predictive ability of the technical
patterns are unlikely to materialise.

The rest of the paper is structured as follows. Section 2
defines the 10 technical patterns that we aim to detect in the
data. Section 3 describes the detection method. This first uses a
smoothing technique to extract the nonlinear trend in the price
history and then searches for the patterns in this smoothed
function. Section 4 describes the data set of UK stocks used,
the results of applying the pattern detection algorithm, and the
statistical analysis of these results. Section 5 provides some
further discussion of the results overall.

2. DEFINING TECHNICAL PATTERNS

We define technical patterns in terms of their basic geometrical
properties. These are typically the occurrence of local extrema
(minima and maxima). We focus on five pairs of technical pat-
terns that are popular with technical analysts (see, for example,
Edwards and Magee (1966, Chaps. VII-X): head and shoulders
(HS) and inverse head and shoulders (IHS), broadening tops
(BTOP) and bottoms (BBOT), triangle tops (T'TOP) and bot-
toms (TBOT), rectangle tops (RTOP) and bottoms (RBOT),
and double tops (DTOP) and bottoms (DBOT). While there
are other technical patterns and these patterns may be easier to
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detect, for example, moving averages and support and resistance
levels, we choose the patterns that are likely to be more difficult
to detect to demonstrate the power of smoothing as a tool to
identify technical patterns.

Suppose that n local extrema (maxima and minima) have
been identified in a price history. We denote the n extrema by
E,, Es,...E, and the dates on which they occur by ¢}, #;, ..., £;.

We can then define the following patterns:

Definition 1 (Head-and-Shoulders) Head-and-shoulders (HS)
and inverted head-and-shoulders (IHS) are characterized by a
sequence of five consecutive local extrema, E,, Eo, ..., E5, such
that:

E{ is a maximum
E3>E1,E3 >E5

HS = Ey and E5 are within 1.5 percent of their average
Es and E4 are within 1.5 percent of their average
E; is a minimum

IHS = Es<E|,E3<Ej

Ey and E5 are within 1.5 percent of their average
Es and E4 are within 1.5 percent of their average

Definition 2 (Broadening) Broadening tops (BTOP) and bottoms
(BBOT) are characterized by a sequence of five consecutive
local extrema, E4, Eo, ..., E5, such that:

E| i1s a maximum
BTOP = { E|<E3<Ej;
Ey>Ey4

E; i1s a minimum
BBOT =<{ E;>Es>E;3
E9<E,4

Definition 3 (Triangle) Triangle tops (TTOP) and bottoms
(TBOT) are characterized by a sequence of five consecutive
local extrema, E{, Es, ..., E5, such that:
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FE; 1s a maximum
Eo<E,

E{ is a minimum
TBOT = ¢ E|<E3<E;
Eo>E,

Definition 4 (Rectangle) Rectangle tops (RTOP) and bottoms
(RBOT) are characterized by a sequence of five consecutive
local extrema, E4, Eo, ..., E5, such that:

(F, is 2 maximum

tops are within 0.75 percent of their average
bottoms are within 0.75 of their average
lowest top > highest bottom

RTOP =

E| 1s a minimum

tops are within 0.75 percent of their average
bottoms are within 0.75 of their average
lowest top > highest bottom

RBOT =

Introducing the requirement that events happen at least a
period apart complicates the definition of double tops and
bottoms. The double top starts at a local maximum, E,, then
the highest local maximum E, occurring after £, in the set of all
local extrema is located. The two tops are required to be within
1.5 percent of their average and a month apart (22 trading
days). Double bottoms are inverted double tops. Formally:

Definition 5 (Double Top and Bottom) Double tops (DTOP) and
bottoms (DBOT) are characterized by an initial local extremum,
E,, and subsequent local extrema E, and E; such that:

E,=sup{P, 14 > 1],k =2,...,n}

d .
an Ey=inf{P, :4; >11,k=2,...,n}
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E| 1s a maximum
DTOP = E; and E, are within 1.5 percent of their average
L=t > 22

E| 1s a minimum
DBOT = ¢ E; and E, are within 1.5 percent of their average
ty — 17 > 22

These formal definitions characterise the visual features of the
patterns that are well established among technical analysts. The
head-and-shoulders pattern has Eg as the ‘head’ and £, and E; as
the ‘shoulders’. Broadening patterns appear as a diverging
sequence of extrema, while triangle patterns appear as a conver-
ging sequence of extrema. Rectangle formations appear as a
sequence of extrema that could be bounded by horizontal
parallel lines. Double tops (bottoms) are formed when stock
prices increase (decrease) to a certain level, show a considerable
decline (rise), and then rebound to the previous high (low) level.

3. THE IDENTIFICATION OF TECHNICAL PATTERNS

The basis of technical analysis is the visual recognition of pat-
terns in the nonlinear evolution of share prices. To capture
these patterns, we begin by assuming that share prices satisfy
the following relation:

Pt:m(Xt)+€t, tzl,,T (1)

where m(X)) is some fixed but unknown nonlinear function of a
state variable X, and ¢, is white noise.

As the patterns are to be detected in the time series of prices,
we set the state variable equal to time, X;=¢. Thus, equation (1)
permits the time series of prices to be divided into a nonlinear
function of time and noise. The nonlinear function, m(X,), to be
estimated, will then be used to detect patterns in the price series.

To estimate the nonlinear function m(X,), we used a smooth-
ing estimator. This has the effect of removing some of the finer
structure of movements (‘noise’) from the price history, to con-
centrate on the underlying nonlinear trend. This procedure is
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designed to represent the rather more informal manner in
which technical analysts proceed to identify patterns in their
charts. Smoothing recovers nonlinear relations by a process of
sequential local averaging of the data.

Imagine that it is possible to observe repeated samples of a
share price on a particular date, X,o=x,. If that is the case,
a natural estimate of the function m(xg) would be the average
of those repeated sample observations. In reality, this is not pos-
sible, but given sufficient smoothness of the function, averaging
observed prices in the neighbourhood of that date can effect-
ively achieve the same goal. If prices nearest to the particular
date are given greater weight, then the estimator will be closer
still to m(xg).

Formally, for any given x, a smoothing estimator of m(x) can
be expressed as:

i) = %Z a(x)P, ()

where the weights w(x) are large for those prices on dates near
date x, and small for those prices on dates far from x. To
implement this procedure it is necessary, therefore, to choose
a weighting function and define the meanings of ‘near’ and ‘far’.

Following Lo et al. (2000), we used a weighting function con-
structed from a Gaussian probability density function.* Specific-
ally, this means that function m(x) is estimated by:

Kh(x — Xt)Pt

M~

o1 i=1
(x) = ?;w,(x)Pt == (3)
= > Ki(x — X))
=1
where Kj,(x) is given by the Gaussian probability density:
1 _x2/2h2
Kj(x) = ——=¢ . (4)

hy/2m

Analogous to the role of the variance parameter in probabilistic
applications of the gaussian density, so the parameter / controls
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the reach of the K,(x). For larger the value of %, the more
averaging takes place over a larger neighbourhood around x,
and so the smoother will be the estimated function. Using
probability density functions as weighting functions in this way
is known as kernel regression. The function Kj(x) is called a
kernel, and the parameter / is known as the bandwidth.

Selecting the bandwidth % is central the success of i (x) in
approximating m(x). Too much averaging will lead to a function
that is too smooth, while too little averaging will lead to a
function that is too choppy.” There are several methods for
selecting bandwidth in kernel regression.” The most heavily
used is the least squares cross validation method, that selects
the bandwidth that minimizes the cross validation function:

1L .
CV(h) = o ;(Pt — 1) (5)
where:
1 &
mh’[ = T TZ# wT,hPT (6)

where 1, is the kernel regression estimator applied to the time
series of prices, and the summands in (6) are the squared errors
of the 1y, each evaluated at the omitted observation. Thus the
cross validation function measures the ability of the kernel
regression to fit each observation when that observation is not
itself used. We use the cross validation method in this study.

The search for technical patterns starts with the sample of
prices {P,, ..., Py}. Rather than search across the entire sample,
which may produce many patterns of various durations, we
require the pattern to be completed within a subsample of
d-+1 days.7 Thus, the first subsample is {P,..., P;;} and sub-
samples move on one trading day at a time until the final
subsample {P7_41,..., Pr} is reached. The separation of the
subsample length into two components, [ and d, allows the time
taken for pattern completion, /, to be distinguished from the
subsequent time taken for the pattern to be recognised, d. Lo
et al. (2000) use /=35 and d =3 and we use the same here.
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For each subsample, we estimate a kernel regression using
the prices in that subsample, hence:

t++d—1
Kh(T—S)PS
(1) = T L ot=1,....T—(+d—1), (7)
K/I(T—S)

s=l

where Kj(z) is given in equation (4) and h is the bandwidth
parameter obtained using least squares cross validation and
then multiplied by 0.3.

As my,(7) 1s a differentiable function of 7, the identification
of extrema is straightforward. Specifically, extrema occur
when ), (1) xm, (T 4+ 1) <0 (if this product was positive, then the
gradients of the function would be in the same direction).® In
cases, where the closing price remains constant, and
my, (1) xmy, (T + 1) =0, we need to determine whether the flat
spot that we have identified is an inflection or an extrema. Thus,
we locate the first instance when my(7) x my (T +x) # 0. If
my, (1) x my (T 4+ x)>0, then an inflection has been found, but if
my, (T) % My, (T +x) <0, then an extrema is deemed to have been
found, at the midpoint of the flat section.

Figure 1 shows an example of a head-and-shoulders pattern
found for the price history of the BOC Group using data
between 26 October 1986 and 30 May 2001. The extrema
searching program would have identified extrema at days 5,
11, 15, 17, 23, 32 and 35 within the illustrated subsample. The
program attempts to match these extrema to the pattern defin-
itions described in Section 3. In this case, the extrema at days
15, 17, 23, 32 and 35 match to a head-and-shoulders pattern.

4. DATA AND RESULTS

Our dataset comprises companies that were contained within
the FTSE100 and FTSE250 indices over the period 26 October,
1986 to 30 May, 2001. To ameliorate any effects due to
possible nonstationarities, we divide this time period in three
subsamples of around 5 years (1,230 trading days). The influ-
ence of company size is captured by grouping the companies
into quintiles based upon their average capitalisation during the
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Figure 1
An Example of a Head and Shoulders Pattern in BOC Group
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particular sample or subsample period. Daily closing prices and
market values were obtained from Datastream. The combined
computational complexity of the smoothing and identification
procedures means that some sampling is inevitable to produce
results from a large population of securities within a reasonable
time frame. To obtain a broad cross section of securities, in each 5
year period, we randomly select 15 companies from each quintile,
providing a sample of 75 companies within each 5 year period,
and a total of 225 across the three subperiods.? By comparison, Lo
et al. (2000) sampled 10 companies from each quintile of the
population of NYSE/AMEX and Nasdagq stocks, but considered a
sequence of seven 5 year sub-periods from 1962 to 1996.

Table 1 shows the frequency counts for the number of pat-
terns detected in the smoothed price histories of the 225 com-
panies across 1986 to 2001, and also broken down by size
quintile and subsample. The commonest patterns are the
head-and-shoulders formations, both normal and inverted,
with over 1,480 occurrences of each. These patterns remain
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the most frequently occurring when the data is divided into
subsamples, and also into size quintiles with the exception of
the small firm quintile where the rectangle patterns (RTOP and
RBOT) are the most frequent. Rectangle patterns are the sec-
ond most frequently occurring pattern in all other cases. These
results are different to those found for the US market. There,
the most frequently occurring patterns were double top and
bottoms, with head-and-shoulders patterns, occurring with sec-
ond highest frequency. The least frequently occurring patterns
in the UK market were found to be the broadening patterns,
these are the diverging sequences of extrema, BTOP and
BBOT. This result was also found in the US market. The results
in Table 1 also show that size is positively associated with
increasing frequency of patterns, with more patterns detected
in the smoothed price histories of relatively larger firms. This is
likely to be a trading volume effect. Smaller firms, which trade
less frequently, are more likely to experience periods of zero
returns. The greater the number of zero returns within a 38 day
pattern detection window, the less the chance of a pattern being
completed within that window.

Most pairs of patterns show a similar number of occurrences
for each part of the pair. For example, RTOP and RBOT have
183 and 169 occurrences in the second quintile. For the broad-
ening patterns, however, there is a marked difference on all
occasions in the real data. There are always a lot less BBOT
than BTOP. Interestingly, this result is consistent with the
observation of Robert Edwards in Edwards and Magee that:

It has been assumed in the past that the Broadening Bottoms must exist,
but the writer [Edwards] has never found a good one in his examination of
thousands of individual stocks over many years and only one or two
patterns which bore resemblance to it (1966, p. 148).

Two further interpretations can also be given to this result,
which would also apply for the US market. It could mean that
the computerised pattern detection algorithm is finding pat-
terns that, from a Chartist’s viewpoint, are not really there.
Or, it could mean that Chartists are not as good as a computer
at detecting patterns.'” This latter interpretation is the one
made implicitly by Lo et al. (2000)."!
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By way of comparison, Table 1 also reports the frequency
counts of patterns detected for a sample of simulated geometric
Brownian motion calibrated to match the mean and standard
deviation of each company in each of the three 5 year sub-
periods.'? This yields a different set of frequencies. Overall,
we find that there are more patterns detected in the simulated
data than in the actual data. There are more head-and-
shoulders, rectangle and double top and bottom and broad-
ening top patterns, but fewer triangle and broadening bottom
patterns. Head-and-shoulders patterns remain the most often
detected, with rectangle patterns the second most common. In
the simulated data, however, the frequency counts of these two
types of patterns are much closer to each other than in the
actual data. Our results are in complete contrast to those
found for the US market by Lo et al. (2000). They found
fewer patterns in their simulated data overall, with only the
broadening patterns showing an increase. This difference
could however, be an artifact of the simulations, since in both
cases only one simulation is carried out.'® While it is difficult
to draw general conclusions from only one simulation, the
results do point to differences between the actual and IID
lognormal returns. Moreover, our contrasting results suggest
that whether there are more or less patterns in actual or simu-
lated data is not possible to gauge without a huge expenditure
of computer time.

Figure 2 shows each occurrence of the head-and-shoulders
pattern, providing a visual representation of the results for that
pattern in Table 1.'* Each occurrence is plotted with the day of
pattern completion along the x-axis and the market capitaliza-
tion along the y-axis. Each different shade of the plot represents
one of the three sub-periods, while the y-axis marks the quintile
divisions. While there seems little to indicate any clustering of
patterns within any sub-period, there does appear to be rela-
tively few occurences among the smallest quintile. A similar
picture emerged for triangle and broadening patterns, while
rectangle and double tops and bottoms appeared with no less
frequency in the smallest quintile. The size effect observed here
for some of the patterns was not so obvious among US stocks
and, as suggested earlier, most likely reflects the relatively thin
trading among these smaller UK companies.
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Figure 2
An Example of Pattern Occurrences Sorted by Date and Firm Size
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Associated with each technical pattern is a predicted market
direction in subsequent days. Price falls (rises) are predicted by
(inverted) head-and-shoulders, broadening tops (bottoms),
triangle tops (bottoms), rectangle tops (bottoms), and double tops
(bottoms). We examine the predictive power of the technical
patterns in a number of ways. If technical patterns have no pre-
dictive power, then returns conditioned on one of the technical
patterns occurring should be no different to unconditional
returns. So, we compare the moments of the distribution of
returns conditional on a technical pattern occurring to the dis-
tribution of unconditional returns. Then, we formally test
whether the distribution of returns conditional on a technical
pattern occurring is different to the unconditional distribution
of returns. In addition, we examine whether the returns
conditional on a pattern occurring exceed a passive market return
benchmark. If technical patterns have predictive power, then
excess returns should be positive for patterns predicting rises, and
negative for patterns predicting price falls."

© Blackwell Publishing Ltd 2003



280 DAWSON AND STEELEY

Conditional returns are defined as the one day continuously
compounded returns d days after a pattern has completed.
Thus, if the sliding window is across days ¢ to t+1+d —1 and
a pattern is completed at ¢ +/— 1, then the conditional return
for stock i R;, is:

Piivivan
R;; = log | =), 8
" og< Pitihta (®)

For each stock a sample of unconditional returns is obtained
by sampling at random from the sub-period price history 100
one-day continuously compounded returns. In order for the
unconditional and conditional returns to be compared, they are
standardized by subtracting their mean and dividing by their
standard deviation.'® Market adjusted returns are defined as the
conditional return minus the contemporaneous market return.

Table 2 contains summary statistics for the conditional and
unconditional standardized returns. So far as the means of the
conditional returns are concerned, their sign is as expected if the
patterns have value, in all cases except for the double patterns.
When the data are partitioned by sub-period and size quintile,
however, this result is less strong, with rather more variation in
sign observed. What is apparent across all the results is the
considerable variation among the results for different patterns.
For example, the mean, standard deviation, skewness and
kurtosis for the RBOT for the full sample are {0.0051,
0.9347, —2.9299, 421.4563}, while for the TTOP they are
{-0.0085, 1.0475, —0.1965, 2.4221}. When the conditional return
moments are compared to those for the unconditional returns,
there is some suggestion that conditioning of returns is taking place.

Table 3 contains summary statistics for the market-adjusted
returns. Across all technical patterns and sample periods, the
average market adjusted return is negative suggesting that the
patterns do not have predictive power in general. Moreover,
when the results are partitioned by pattern, only the TTOP and
RBOT patterns display the expected sign. The results for the
larger firm quintiles, 4 and 5, are more in line with expecta-
tions, with patterns HS, HIS, BTOP, BBOT, TTOP and TBOT
all displaying the expected sign. But, here again, with the other
patterns there is contrary evidence.
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The difference between the conditional and unconditional dis-
tributions is assessed using two nonparametric statistics: the chi-
square goodness of fit test; and the Kolmogorov-Smirnov test.
The chi-square test is used to test whether there is a difference
between an observed and expected frequency of observations
falling into a set of categories. In this application, the categories
are chosen to be the deciles of the unconditional returns distribu-
tion. Thus, if the conditional distribution is no different to the
unconditional distribution, then the expected proportion of con-
ditional returns in each decile would be 10 percent. The chi-
square test assesses the deviations from 10 percent across the
whole distribution. Specifically, the test statistic, Q, is given by:

Y (n; — 0.10m)*
=y L T L2 9

where n; is the number of observations that fall into decile j and
n is the total number of observations. The asymptotic distribu-
tion of n; is given by:

Vi(nj — 0.10)4N(0,0.10(1 — 0.10)) (10)

which is used to provide asymptotic z-statistics. The Kolmo-
gorov-Smirnov tests the difference between two cumulative
frequency distributions. Specifically, the maximum difference
between the two cumulative distributions, scaled by a function
of the sample sizes, is compared to critical values obtained from
the (limiting) distribution of the statistic.”

Table 4 shows the results of the goodness-of-fit tests. The
frequency of conditional returns falling into the unconditional
return deciles are significantly different from 10 percent for
eight out of the ten patterns. The patterns that do not seem to
influence the returns distribution are the broadening patterns,
which were the least frequently observed patterns. Table 5
shows the results of the Kolmogorov-Smirnov tests for the
equality of the distributions. For the full sample of companies
across 1986 to 2001, five of the 10 patterns caused significant
differences between unconditional and conditional distribu-
tions, namely HS, HIS, RBOT, RTOP and DBOT. For the

© Blackwell Publishing Ltd 2003
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290 DAWSON AND STEELEY

head-and-shoulders (HS) and RBOT patterns, this result is
stable across sub-periods and quintiles, while the others show
some variation. The result for the head-and-shoulders pattern
appears stronger the smaller the companies being examined
and the more recent the sample.

5. DISCUSSION AND CONCLUSION

We have identified technical trading patterns in UK stock data
that has been smoothed using kernel regressions. We find that
the distributions of returns conditioned on these technical pat-
terns can be significantly different from the unconditional
returns distributions. Our results validate the findings of Lo
et al. (2000) who examined US stock market data and found
similar, but slightly stronger, results in support of the predictive
ability of technical patterns.

Our results in combination, however, provide less support
for the value of technical trading patterns. As pointed out by
Jegadeesh (2000), the information in Tables 1 to 3 is sufficient
to construct {-tests of the significance of the difference of the
conditional mean returns away from either the unconditional
mean returns or the market returns. It is clear, without calcula-
tion, that the mean returns are not significantly different. The
same is also true of the study by Lo et al. (2000).

If the means of conditional and unconditional returns are
not significantly different from each other, yet we find (as did
Lo et al., 2000) that the distributions are significantly different
from each other, then these differences must be the result of
higher order moment differences. While the information in time
varying standard deviations may be of importance in testing
forecasts, it is difficult to interpret these higher order differences
in terms of market efficiency, which is primarily mean return
based. Indeed, so far as mean returns are concerned, our study
provides no reason to question market efficiency.

NOTES

1 See, for example, recent studies by Chang et al. (1998) and Steeley (2001)
regarding weekend effects in the US and UK stock markets, respectively,
and Sehun (1993) and Chelley-Steeley (1996) regarding risk adjusted turn-
of-the-year effects in the US and UK stock markets, respectively.
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For example, Fama and French (1992) for the US market and Strong and
Xu (1997) for the UK market.

For example, DeBondt and Thaler (1985), Fama and French (1986),
Poterba and Summers (1988), Lo and MacKinlay (1990) and Mills (1991).
Although the weighting function is constructed from a probability density
function it plays no probabilistic role. It is merely a convenient method to
define a weighting scheme, that is, as a ‘bell’ curve.

See Lo et al. (2000, Figures 1-4) for a demonstration using a sine function
plus a random error.

See, Hardle (1990) for alternative methods.

Searching for partially completed patterns, as Lo et al. (2000) point out,
would require more structure to be placed on the otherwise flexible
smoothing estimator.

While Lo et al’s algorithm compares the signs of neighbouring deriva-
tives, ours compares the product of neighbouring derivatives against zero.
The effect is the same.

As the sampling is done with replacement, there may be companies in
common across sub-periods.

This might suggest that the algorithm has not been correctly calibrated. In
particular, it might suggest that alternative scalings be applied to the cross
validation function. But, of course, the scaling used was selected by Chart-
ists themselves.

One is however aware of Samuelson’s cautionary note to all forecasters
that ‘economists have succesfully forecast seven of the last five recessions’.
Specifically, the price process was assumed to satisfy:

P, = Pt_leuﬂfdz

where dz is a normally and independently distributed random shock, ( is
the mean and o the standard deviation of the associated log returns.
Each simulation exercise takes approximately 3 days of pure computa-
tional time on a Pentium III 500 before manipulation of the actual results
can take place, so a large number of simulations was deemed impractical to
run.

Similar graphs were produced for each pattern and can be obtained from
the authors on request.

In the face of a predicted stock price fall, an investor would obtain a return
in excess of the market provided the market falls by no more than the
security price.

Thus, normalised conditional returns are given by:

n _ Ris — E(R;;)
H a(Riy)
The mean return, E(R;;), and standard deviation, o(R;,), are calcu-

lated across all conditional returns for that security in the particular sub-
period. Thus:

ERig) = (1mis) X0ty Ruliy, and
o(Ris) = (Uin) Yo lby, | (Ridiy — E(Rip)?,
where T}, = 1230 x kk =1,2,3 are the sample periods, where [;, is an
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292 DAWSON AND STEELEY

indicator variable taking the value 1 if stock ¢ has a conditional return at
time ¢ and zero otherwise, and where 7, is the number of patterns that
stock ¢ has in the kth sub-period.

The unconditional returns, 7;,, are normalised to:

Tig — E(Tzi,r)

o(riy)

no_
inw

where E(r;)) = (1/100) )% i, and 02 (ri;) = (1/100) 32/ (r:) — E(r;)))%.

17 For further details of this statistic, see Seigel and Castellan (1988). Critial
values are provided in their Table L;;;,
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