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Price improvement is the difference between the
execution price of an order and the quoted bid
or ask when the order was submitted. We show
that expected price improvement falls off dra-
matically as the size of the order approaches the
quoted depth, and becomes negative for larger
orders. This is particularly important for small
Jirms because the quoted depths are low. Using
quoted spreads and depths and our estimate of
expected price improvement, we show that trad-
ing strategies that attempt to exploit the weekly
predictability of small-firm returns would be
swamped by transaction costs.

Lo and MacKinlay (1990) showed that the return on
a portfolio of small-firm stocks is strongly correlated
with its own previous week’s return (p = .33) and
with the previous week’s return on a portfolio of
large-firm stocks (p = .28). Given this predictability,
we show that a trading strategy that switches between
portfolios of small and large firms based on the prev-
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ious week’s returns could generate excess annual returns of 15% or
more if investors could always buy or sell at either the most recent
trade price or the current quote midpoint. We also show, however,
that effective spreads average 5% of the stock price for $3,000 orders
to buy or sell the smallest 20% of the firms traded on the NYSE. Once
this effective spread is considered, we show that the realized return
from the switching strategy will underperform a simple buy and hold
strategy.

Lo and MacKinlay’s primary purpose was to show that portfolio
return autocorrelation implies cross-predictability of stocks within the
portfolio and that this cross-predictability is a major source of what
other researchers had labeled “contrarian” profits. They recognized
that transaction costs may make these contrarian strategies unprof-
itable; their point was that if the profits are genuine, the mechanism
generating the profits had been misunderstood. We provide a direct
test of investors’ ability to exploit the cross-predictability of returns by
evaluating strategies that switch between portfolios of small and large
firm stocks. We estimate conditional expected execution price as a
function of quoted spread, quoted depth, and order size, and we use
this relationship along with intraday price and quote data to estimate
profits from simulated trading strategies.

The switching strategies that we investigate form equally weighted
portfolios of either small- or large-firm stocks each time a switch is
made. Accordingly, the returns on simple, equally weighted portfolios
of the small- and large-firm stocks would provide natural benchmarks
for judging the profitability of the switching strategies. In making such
comparisons, however, one must realize that these equally weighted
portfolios are themselves dynamic strategies requiring weekly rebal-
ancing to maintain equal weights. As pointed out by Blume and Stam-
baugh (1983) and Roll (1983), bid-ask spreads and serial dependence
of returns can cause rebalanced portfolio returns to be quite different
from buy-and-hold returns. In addition, the rebalancing is essentially a
“contrarian” strategy, selling stocks that increased in price and buying
stocks that fell, so it will also benefit from cross-predictability. Assum-
ing trades occur at the last transaction price and ignoring transaction
costs, we show that the small-firm equally weighted portfolio has
substantially higher returns than the buy-and-hold portfolio. Further,
these returns are almost as large when transactions are assumed to oc-
cur at the current quote midpoint, indicating that cross-predictability
is an important source of the difference. For the large-firm portfo-
lio, the equally weighted and buy-and-hold returns are essentially the
same. We show that the transaction costs associated with weekly re-
balancing have a negligible effect on the portfolio of large firms, but
they reduce the annual return on the portfolio of small firms by more
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than 20%, from a 14% average annual profit to an 8% average annual
loss.

In the design of our trading strategies, the lagged returns on both
the small- and large-firm portfolios provide the signals of when to
trade. Since small-firm portfolio returns are positively correlated with
the lagged values of both small- and large-portfolio returns, and since
large-firm portfolio returns are relatively unpredictable, it would be
natural to consider switching investment from the large-firm portfo-
lio to the small-firm portfolio following positive results on both and
switching back following negative returns. However, it is not clear
what action should be taken when the lagged returns give different
signals, except that it would seem that the lagged small-firm return
should be given more weight based on the higher correlation coef-
ficient. In fact, as Boudoukh et al. (1994) point out, it could be that
the small-firm return is the only important conditioning variable. That
is, since the large- and small-firm portfolios exhibit high contempo-
raneous correlation (p = .75), it could be that the lagged large-firm
return merely serves as a noisy proxy for the lagged small-firm return.
They argue that the observed correlation structure is roughly consis-
tent with this model, that is, .75 (the correlation between small and
large) times .33 (the correlation between small and lagged smalD is
approximately equal to .28 (the correlation between small and lagged
large). We use our nonparametric regression techniques to investigate
the joint dependence of the small-firm portfolio returns on the lagged
values of both the small- and large-firm portfolio returns. We use this
joint relationship in designing our strategy, but we show that much of
the information is provided by the lagged small-firm portfolio returns.

While we investigate whether the predictability of small-firm port-
folio returns can be profitably exploited, we don’t investigate what
causes this predictability. Mech (1993) argues that this predictability
can be caused by transaction costs. He develops a model in which
some traders realize that some stocks respond slowly to market-wide
information, but these traders only choose to trade when the mis-
pricing exceeds the transaction costs. He shows that the stocks that
have a large spread (relative to the volatility of their return) tend to
react more slowly to innovations in a market-wide index. By pro-
viding support for his model, Mech’s findings are indirect evidence
that a trading strategy based on portfolio autocorrelations will not be
profitable. In this article we provide direct evidence that the strategy
is unprofitable. We also show that, excluding transaction costs, the
estimated profits from the switching strategies are roughly the same
whether we assume trades occur at the midpoint of the current quote
or at the last transaction price. Since quotes are updated continu-
ously, this provides additional confirmation of Mech’s assertion that
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the cross-predictability of returns is not an artifact of nonsynchronous
trading.

Researchers have always recognized that transaction costs could
have an important impact on investors’ decisions [e.g., see Amihud
and Mendelson (1986)], but it was difficult to estimate them reliably.
The availability of intraday quote data has made this estimation easier,
but it has not completely solved the problem because orders often ex-
ecute at prices that are more favorable than the prevailing quotes. The
actual execution price depends on the size and form of the order, as
well as the prevailing conditions of the limit book, the trading crowd,
the specialist’s position, and the distribution of information among the
various participants. For example, both Harris and Hasbrouck (1992)
and Petersen and Fialkowski (1994) show that the average execution
price of a market order is from 2 to 11 cents better than the pre-
vailing quote point, depending on the width of the prevailing spread
and the size of the incoming order. We also investigate this difference
between execution price and the prevailing quote (termed “price im-
provement” following Petersen and Fialkowski), but we feel that our
article extends the results from these previous articles in two important
ways. First, we use nonparametric regression techniques to investigate
the conditional expected price improvement, and we show that these
techniques are superior to OLS because some of the relationships are
highly nonlinear. Second, we show how these relationships impact
the profitability of actual trading strategies.’

We find that the expected price improvement for a market order
depends on the quoted spread and depth and the size of the or-
der. Although we estimate two-dimensional surfaces for each quoted
spread that give expected price improvement jointly conditioned on
depth and order size, we find that most of the important features of
these joint relationships are captured using just the difference between
quoted depth and order size. We call this difference “excess depth,”
and we show that the expected price improvement approaches zero
as the order size approaches the quoted depth, becoming negative
as the order size exceeds the depth. Interestingly, we find that the
spread, depth, and order size variables capture the important features
of the conditional expected price improvement. Once the depth and
order size variables are “normalized” by the average quoted depth
for each firm, we show that there is little additional benefit from us-
ing other conditioning variables, including firm-specific characteristics
such as market value and average trading volume, or measures of re-

Chan and Lakonishok (1993) investigate the execution of orders for a sample of money managers,
but they lack data on when the orders were submitted.
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cent market activity such as price volatility and order imbalance. Note
that this does not mean that these other variables are not related to
effective spreads. Rather, it means that the impacts of the variables are
largely captured through their impacts on quoted spread and depth.

It should be noted that all of our results are based on strategies
using only market orders. We do not consider limit orders, partly as a
matter of convenience, but also because we believe that the estimation
of profits from relatively short-term trading strategies is more prob-
lematic in the case of limit orders. Limit orders may be inappropriate
for implementing a particular trading strategy because of the risk that
the strategy’s potential profit will evaporate while waiting for the limit
order to be hit. In addition, Harris and Hasbrouck (1992) show that
although it may be better to use limit orders in some circumstances,
the difference is an order of magnitude smaller than the difference
between the execution price and the prevailing quote for either type
of order.

The organization of the remainder of this article is as follows. Sec-
tion 1 reviews the mechanics of trading on the NYSE and describes
the various data sources. In Section 2, we introduce the nonparamet-
ric estimation techniques and present the results from the estimation
of conditional price improvement. Section 3 tests the profitability of
trading strategies that attempt to exploit the predictability of small-
firm returns and compares the realized returns on rebalanced (equally
weighted) portfolios to the returns on buy-and-hold portfolios. Sec-
tion 4 concludes.

NYSE Trading Procedures and Data

Trading on the NYSE (and the AMEX) is a continuous auction.? Each
stock is assigned to a single specialist on the floor of the NYSE who is
charged with the responsibility to maintain a “fair and orderly market”
in the stock. In practice, this means that the specialist tries to avoid
large price swings between trades and tries to quote narrow spreads
and adequate depths. The specialist profits from the market-making
service he provides, but faces competition in providing these services
from specialists on the regional exchanges® and from limit orders
submitted to the NYSE.

Most of the customer orders submitted to the NYSE are either mar-
ket orders, which demand immediate execution at the best available

2 Trading at the open (and sometimes the close) is a call auction. See Hasbrouck, Sofianos, and
Sosebee (1993) and Hasbrouck and Sosebee (1993) for a description of NYSE trading and reporting
procedures.

3 See Lee (1992) for a discussion of intermarket competition.
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price, or limit orders, which agree to execute only at the limit price
or better. The specialist posts continuous quotes consisting of bid and
ask prices and associated depths (the number of shares offered at the
ask and the number of shares demanded at the bid). These quotes are
essentially minimum guarantees of performance extended to market
orders. For example, if a market sell order arrives for a quantity less
than or equal to the quoted depth at the bid, the order will execute
at or above the quoted bid price. Market orders frequently do bet-
ter than the minimum guarantee contained in the NYSE specialist’s
quotes; sometimes execution prices improve on quoted prices and
sometimes orders for more than the quoted depths execute at the
quoted prices.*

The profitability of a particular trading strategy will depend not
only on the quoted spread at the submission time of the order, but
also on the likelihood that the order will execute at a more favorable
price than is quoted. For example, if we knew that the specialist had
stopped a market sell order, we would expect a market buy order
would have a good chance of executing below the quoted ask, espe-
cially if the spread were greater than one-eighth. Clearly, the ability to
observe all of the features of the trading floor would be a great help
in estimating the probability of a price improvement. Unfortunately,
most of this information is not available to traders away from the trad-
ing floor. In addition, most of the available intraday data include only
the sequence of quotes and trades. Not only does this limit the ability
to distinguish between different market conditions, it makes it diffi-
cult to observe the performance of orders that result in trades. Even
though every market order eventually triggers a trade, it is difficult
to tell submission time (it may have been stopped). It is also difficult
to distinguish trades that result from market orders, and whether the
market order was a buy or a sell.

The TORQ database (Trades, Orders, Reports, and Quotes) is newly
available from the NYSE. It covers a period of 3 months for a sample
of 144 NYSE listed firms. These firms were selected by partitioning
all NYSE firms into size deciles and then randomly selecting 15 firms
from each decile. Some data problems encountered after the initial
selection was made caused some firms to be dropped from the final

There are at least four reasons for price improvements compared to the current NYSE specialist’s
quote: (1) the market order may cross with another market order, possibly because one of the
market orders was “stopped”; (2) there may be a limit order in the book inside the quote points
and the specialist does not reflect the order in the quotes because it is small and he prefers to
quote “in size”; (3) a floor trader (or specialist) may decide to better the quoted price in order to
step ahead of a limit order on the book and take the other side of the trade; (4) a better quote
may be available from another exchange. Orders exceeding the depth may still execute at the
quoted prices if floor traders (or the specialist) decide to step ahead of the limit orders entered
at the next price tick on the book.

1126



Estimating Profits from Trading Strategies

sample. In addition to intraday consolidated trade and quote informa-
tion, the database contains information on the parties on each side of
a trade and a record of all orders submitted to the floor by way of the
NYSE’s SuperDOT system. Importantly, the SuperDOT order informa-
tion includes the time that the order was submitted, as well as when
it was executed. This allows us to measure market conditions such as
spread and depth at the time of the decision to submit the order. The
database also allows us to unambiguously determine the order direc-
tion and to examine the overall performance of an order that results in
more than one reported trade. Harris and Hasbrouck (1992) used the
TORQ database to compare the execution of SuperDOT market and
limit orders, whereas here, as in Petersen and Fialkowski (1994), we
use the database to develop conditional estimates of price improve-
ments for SuperDOT market orders.

The ISSM database contains intraday consolidated trade and quote
information for all NYSE and AMEX listed securities covering a pe-
riod of several years. However, it does not contain any orders or
information on the parities to each trade. Due to the limited cover-
age of TORQ, it is desirable to use the ISSM database to evaluate the
profitability of trading strategies. In order to accomplish this, the con-
ditioning variables used to develop price improvement estimates for
market orders must be common between the two databases. This will
allow the application of estimates developed from the TORQ database
to the ISSM database.® Table 1 contains the information variables we
consider in developing the conditional estimate of price improvement.
All of the current market information variables are measured as of the
time that the order was submitted, whereas the historical market data
variables include the 6.5 hours (one full trading day) up to that time.
Explicit definitions of the individual variables are contained in the
Appendix.

In general, the particular trading strategy under consideration will
specify which stocks to buy or sell, as well as when to trade and in
what quantity. Thus, the conditioning variables in columns 1 and 2
of Table 1 are directly determined by the trading strategy. Strategies
that attempt to exploit market information may also directly determine
some of the variables in columns 3 and 4. In addition, strategies that
are not explicitly based on market information may be correlated with
those variables.

Ultimately, the set of conditioning variables represents a trade-off
between a desire to incorporate relevant information and a need to

> In evaluating our trading strategies, we use only the NYSE firms from the ISSM database to be
consistent with the coverage of TORQ.
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Table 1
Conditioning information

Current market Historical market
Order characteristics Firm characteristics information data
Direction Market capitalization Spread midpoint Volume
Size Average daily volume Spread width Order imbalance
Time of day Depths at bid Transaction price

and ask volatility

Percent of trades
inside spread

The table lists the set of conditioning information variables considered in developing the
conditional estimate of expected price improvement. We use all market orders in the TORQ
database submitted during normal trading hours and measure price improvement as the difference
between the average execution price for the order and the bid (or ask) price as of the time the
order was entered in the SuperDOT system. The current market information variables are also
based on the quote in effect when the order was entered, and the historical market data variables
cover the 6.5-hour period (one full trading day) up to that time. Explicit definitions of the variables
are included in the Appendix.

constrain the dimensionality of the relationships to be estimated. For
example, for the historical market data variables in Table 1, we first
examine aggregate statistics for a full trading day. To the extent that
some of these variables are found to contain information important for
price improvement, we can always run additional regressions to inves-
tigate alternative specifications. Another technique for reducing the
dimensionality of the relationships is normalization by firm-specific
averages. We show in Section 2 that the expected price improvement
conditioned on depth and order size seems to have a similar shape
across firms if we divide both conditioning variables by the firm’s
average quoted depth. This normalization seems to work reasonably
well in our data, in the sense that we find no economically impor-
tant relationships when we regress the residuals from the full sample
regressions on average volume, depth, and other firm-specific charac-
teristics. These results indicate that little additional information would
be gained from estimating more general relationships using higher-
order regressions.

Estimating Conditional Price Improvement

In this section we first present the statistical methodology. We then
apply the technique to the sample of market orders in the TORQ
database to nonparametrically estimate the functional relationship be-
tween the price improvement and various conditioning variables. In
Section 3 we use these estimated curves and surfaces to assign ex-
ecution prices to orders generated by trading strategies that attempt
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to exploit small-firm predictability. Of course, there will always be a
danger of omitting some economic variables that are correlated with
the trading strategy and important to price improvement. While we
cannot eliminate this possibility, we try to minimize it by a careful
consideration of a broad set of variables.

2.1 Statistical methodology
This section describes the nonparametric regression techniques we
use to estimate the mean regression function of price improvement
given the conditioning variable. We choose to estimate this regression
function nonparametrically for two reasons. First, there is currently
little theoretical guidance as to what parametric form the regression
function should take (e.g., linear or nonlinear). Second, it allows us
to avoid making strong distributional assumptions about the error
terms.°

Let {Y;, X;}7_, be a finite record of observations of price improve-
ments and a conditioning variable. The mean regression function of
Y; on X; is given by

Yi=m(X,')+8,' i=1,...,mn,

where m is the unknown regression function such that m(x) =
ElY | X = x] and g; is the observation error. The mission of non-
parametric regression analysis is to find an approximation to the un-
known response function m that captures the crucial features of the
mean dependence of Y on X. The general approach of nonparamet-
ric regression is to estimate the mean response of Y for a given value
of X by computing a local average of the points in a small neighbor-
hood around the given value of X. Formally, this local averaging or
smoothing can be defined as

n
m(x,) = Z wi(Xo; Xiy -y Xn) + Vi,
i=1

where {w;(-)}}., denotes a sequence of weights that depends on the
entire sequence of X’s and x, is an arbitrary grid point. Typically the
shape of the weight function w; is described by a density function.
This density function is adjusted by a scale parameter that controls the
size and the specific form of the weights near a given X;. The function
is referred to as a kernel since it is continuous, bounded, symmetric,
and integrates to one.

The drawback of this class of estimators is that they often require a large number of observations
and can be computationally intensive. However, the market microstructure data sets are in general
very large so that the requisite number of observations is available.
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We consider two closely related and complimentary nonparametric
regression techniques. The first is a variable span local linear smoother
known as loess [see Cleveland (1979, 1994)]; the second is a variable
bandwidth local linear smoother [see Fan and Gijbels (1992, 1994)].7
These techniques share two very important features. First, they are
both calculated using a linear (or higher order) weighted least squares
estimate for a neighborhood around x,. This reduces the bias that
can result from using only the local mean if most of the points in the
neighborhood are on one side of x,, which is an important problem
at the boundaries of the support of the data.® The second property
shared by these techniques is that the size of the neighborhood is
increased around grid points in the relatively sparse regions of the
support of the data.

The loess smoother is defined by

() = @ (%) + B(%0) %o,

where @(x,) and ﬁ(x(,) are the weighted least squares estimates for
the data contained in the neighborhood N(x,). That is, & and B8 are
found by minimizing

> wilxo)(Y; — a — Bix)’.
i=1

The weights are assigned to each point in N(x,) using a tricube kernel
defined by
w <|-xo — X |) ,
A(xo)

where W (u) is given by (1 — ©®)3 if # is 0 < u < 1 and 1 otherwise,
and A(x,) is the size of the neighborhood, which is determined by
the spanning parameter. This spanning parameter is defined as the
proportion of points in the sample to be included in each neighbor-
hood.

Careful choice of the spanning parameter is important because as
this parameter is increased the variance of the estimate is reduced
but the bias of the estimate is increased. The idea is that since at a
given grid point we are estimating the conditional mean by averaging
the response variables associated with the predictor variables in a

Loess is sometimes referred to as a “locally weighted running line smoother.” We use terminology
similar to the Fan and Gijbels smoother to emphasize the close similarity between the two and to
help focus the attention on the key difference, which is the way the bandwidth is selected.

See Prahl (1993) for a discussion of boundary effects in the context of a Gasser-Muller estimator,
which is an alternative procedure to the ones described here.
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given neighborhood, as we increase the span we increase both the
number of observations in the neighborhood and the relative weights
placed on the observations further from the grid point. The added
observations potentially decrease the variance, but since we are now
averaging response variables that are farther away from grid point, we
are potentially increasing the bias. Although there are objective ways
of choosing the span, such as “leave one out” cross-validation, these
methods are computationally infeasible in large data sets, because for
n observations they require 7z smooth calculations for each trial span.

The spanning parameter for the loess smoother is chosen by trial
and error. This process begins with a smooth based on a trial value
for the parameter. The residuals from this smooth are then smoothed
on the same conditioning variable. If there is any structure detected
in the residuals as a function of the conditioning variable, then the
trial spanning parameter was too large. The curve is then reestimated
with a smaller span and the process is repeated. If there appears to
be no structure in the residuals, then a larger span is tried in order to
reduce the variance of the estimate. The “optimal” span is the largest
value that leaves no economically important structure in the residuals.

The variable bandwidth local linear smoother differs from the loess
smoother in that the size of each neighborhood (also called the band-
width) is chosen directly, rather than being indirectly determined by a
single spanning parameter. The main advantage of the variable band-
width local linear smoother is that it includes a computationally effi-
cient algorithm for optimally selecting these bandwidths at each grid
point. This algorithm minimizes the integrated mean square error over
all of the grid points, where the mean square error is given by

MSE(xy; b) = b2(x5) + V(%,),

where I;(xo) estimates the bias and V(x,) the variance. The details of
the variable bandwidth local linear smoother are included in Appen-
dix B.

We use the loess nonparametric regression technique as our pri-
mary tool for analyzing the relationships in the following sections
because it has several advantages over the variable bandwidth local
linear smoother. It is less sensitive to clustered data, is easily extended
to multiple conditioning variables, and allows for the use of robust
techniques for attenuating the effect of outliers and for calculating
standard errors in the presence of non-Gaussian residuals.” The dis-

° The implementation of the robust estimator begins with the standard weighted least squares
estimate at each grid point, calculates the residuals using this estimate, and then reweights the
observations, reducing the weight on those with large residuals. For a complete discussion see
Chambers and Hastie (1993).

1131



The Review of Financial Studies /v 9 n 4 1996

advantage of the loess technique is that the spanning parameter is
chosen by examination of the residuals as opposed to the objective
procedure based on the minimization of integrated mean square error.
Accordingly, we use the variable bandwidth local linear smoother as
a check of the univariate loess regressions to make sure we are not
choosing an unreasonable span. In particular, this guards against pos-
sible oversmoothing, which might cause us to miss important features
in the data.

With two exceptions we used a spanning parameter of .25 because
it produced loess curves with similar features to those produced by
the variable bandwidth local linear smoother and left little discernable
pattern in the residuals. One exception is in the top half of Figure 1 in
Section 2.2, where the firm (ASARCO) has relatively few observations.
In this case we found that a spanning parameter of .5 was more
appropriate. The second exception is the residual regressions reported
in Table 3 in Section 2.3, where the independent variables are highly
clustered. These regressions include a regression of residual price
improvement on firm size, in which the independent variable has
just 144 distinct values. With this high degree of clustering, we found
that loess curves estimated using the .25 spanning parameter were
very erratic and the variable bandwidth curves were even more so.
Accordingly, in these regressions we also used a spanning parameter
of .5.

2.2 Estimates of price improvement

In this section, we present the results of our nonparametric regressions
of price improvement on various conditioning variables. Recall that
price improvement is defined as the ask quote minus the trade price
for a buy order, and as the trade price minus the bid quote for a
sell order. Table 2 provides summary statistics for price improvement
segregated by the size of the quoted spread for the entire TORQ
sample of market orders.

Several features of the data deserve special note. The right-most
column shows that most of the market orders in the sample were
submitted when the spread was either 1/8 or 1/4. Price improvement
is possible when the spread is 1/8, because orders are sometimes
crossed at the opposite quote. The table shows that for 12% of the
orders where the spread was 1/8, a market buy order executed at
the bid or a market sell order executed at the ask, and these cases
more than explain the average price improvement (12% of $.125 is
$.015). When the spread was 1/4, more than half of the market orders
executed at the midpoint, whereas just over one-third executed at the
quote (at the ask for a buy or the bid for a sell). These midpoint
orders explain the bulk of the average price improvement when the
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spread is 1/4 (52.6% of $.125 is $.066). Since price improvement is
available to both buy and sell orders, the average effective spread is
equal to the quoted spread less twice the average price improvement,
The second to last column on the table shows that when the quoted
spread is 1/8, the average effective spread is 79% of the quoted spread
($.099), whereas when the quoted spread is 1/4, the average effective
spread is only about 42% of the quoted spread ($.105). As pointed
out by Petersen and Fialkowski (1994), it appears that there is little
difference in the absolute size of the average effective spread when
comparing quoted spreads of 1/8 and 1/4. Interestingly, this effect
does not continue for quoted spreads above 1/4

Although the average effective spreads are of similar magnitudes
for quoted spreads of 1/8 and 1/4, our goal is to estimate conditional
expected price improvement, which is evidently quite different. In ad-
dition, price improvement for 1/8 spreads is primarily due to trades at
the opposite side of the spread, whereas for 1/4 spreads it is primarily
due to midpoint trades, so the combinations of events that result in
the price improvements may be fundamentally different. Accordingly,
we feel it is important to estimate the conditional relationships sepa-
rately. We also estimate separate relationships for spreads below 1/8
and for spreads above 1/4.

Our goal in investigating different conditioning variables is to come
up with a parsimonious list that captures the economically important
variation in the conditional expected price improvement. We have
already decided to condition on spread size (by running separate
smoothes for four different sizes), but the obvious question is where
to begin the search for the remaining variables. Although it is possible
that many, if not all, of the potential conditioning variables contain
some information when considered individually, we would hope that
certain of the variables would proxy for some of the information con-
tained in others. For example, it would seem natural that the rate of in-
formation arrival could affect effective spreads, because market mak-
ers may become more anxious about trading with informed traders.
However, if this anxiousness shows up in lower quoted depths, then
if we condition on depth we may effectively include the information
arrival effect, making it unnecessary to include other variables such
as price volatility.

After examining scatter plots showing price improvement versus
several conditioning variables for a collection of individual firms, we
noticed that there is a strong positive relationship between price im-
provement and quoted depth and a strong negative relationship be-
tween price improvement and order size. These relationships are not
surprising given the previous theoretical results of Dupont (1995),
Easley and O’Hara (1987), and Kyle (1985), and the empirical results
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of Lee, Mucklow, and Ready (1993). Summarizing the ideas from these
articles, larger trades are more likely to be information based, so the
specialist and other market participants would be less likely to step
ahead of the posted quotes in order to take the other side. In addi-
tion, quoted depths are likely to be low when the specialist and other
market participants sense an increased risk of informed trades, which
would also imply that they would compete less aggressively for order
flow.

Although the directions of the individual relationships are as ex-
pected, extant theoretical and empirical results give little guidance
as to the likely form of the joint dependence of price improvement
on both depth and order size. In examining the results for several
firms in our sample, we noticed that most of the important features
of these joint relationships could be captured in a univariate relation-
ship using the difference between quoted depth and order size as
the independent variable. We call this difference excess depth, and we
found that price improvement drops off dramatically as the excess
depth approaches zero and becomes negative, that is, as the order
size becomes larger than the quoted depth. Based on these results,
we chose depth and order size (along with spread) as conditioning
variables. The benefit from adding additional variables is then as-
sessed by smoothing them against the residuals from the regression
of price improvement on depth and order size.

The nonparametric methodology we employ lends itself to a graph-
ical presentation of the results. However, it is infeasible to present the
results for all 144 firms in the TORQ database. Figure 1 shows four
regressions of price improvement on excess depth for two “typical”
firms, ASARCO and Boeing. The two regressions on the left side of the
figure are for 1/8 spreads, and those on the right are for 1/4 spreads.
Based on total number of orders, Boeing is fifth largest in our sample,
and ASARCO is thirty-fourth. As shown in Table 2, there were a total
of 197,065 orders at 1/8 spreads and 117,227 orders at 1/4 spreads
for the 144 firms in our sample. This works out to roughly 1,000 per
firm for each spread size, but there are a few very actively traded
firms in the sample, so the medians of the orders per firm at 1/8 and
1/4 spreads are both about 200. The fact that ASARCO and Boeing
have roughly equal numbers of orders at 1/8 and 1/4 spreads is not
unusual. The relative proportions of orders at 1/8 and 1/4 spreads
lies between 25%/75% and 75%/25% for two-thirds of the firms in the
sample.

The solid lines in each figure are the loess estimates of the condi-
tional mean dependence of price improvement on excess depth. The
lines with short dashes are plotted two standard errors above and
below the estimated curves. Due to the high degree of clustering of
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Figure 1

Loess smooths of price improvement regressed on excess depth—ASARCO and Boeing
Price improvement is measured in dollars per share. Excess depth is the difference between
quoted depth and the size of the order, where both are expressed as a fraction of the average
quoted depth for the firm. The points represent individual market orders, the solid curves are
loess smooths, and the dashed curves are two standard errors from the smooths.

price improvements at even eighths, the residuals from the regres-
sion are clearly not Gaussian. Accordingly, the curves and standard
errors are calculated using the robust technique described in Section
2.1. The smooths estimated without the robust adjustment are very
similar, with the only discernable differences near the endpoints. The
standard error calculations assume independence of the residuals, so
if there is important time-series dependence in price improvement,
these standard errors may be understated. The regressions are shown
for excess depths ranging from —1 to 5 times the average quoted
depth for the firm (more on this below). In all four cases, there were
orders where the excess depth was outside this range, but in no case
did these orders constitute more than 1% of the orders observed for
that spread size for that the firm. Although the smooths were esti-
mated over the entire span of the data, graphing them over a wider
range makes it difficult to see the details of the relationship around
zero, where most of the orders are concentrated.
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Figure 2

Loess smooths of price improvement regressed on excess depth—all firms

Expected price improvement is measured in dollars per share. Excess depth is the difference
between quoted depth and the size of the order, where both are expressed as a fraction of the
average quoted depth for the firm. The dotted lines are linear OLS estimates, and the lines with
alternating long and short dashes are least-squares piecewise-linear estimates. The solid curves
are loess smooths, and the dashed curves are two standard errors from the smooths.

For each regression in Figure 1, the conditional expected price
improvement is a concave function of excess depth that becomes zero
at approximately zero excess depth (the point where the incoming
order is equal to the specialist’s quoted depth). We observe these same
features for most of the firms in our sample, which gives hope that the
relationship can be estimated for the aggregate sample. Consistency in
concavity and intercept, however, is not enough. To see the problem,
consider the following example. For firm A, the average quoted depth
at the ask is 1,000 shares, the current depth is 2,000 shares, and a
market order arrives to purchase 6,000 shares. For firm B, the average
quoted depth at the ask is 20,000 shares, the current depth is 16,000
shares, and a market order arrives to purchase 20,000 shares. The
excess depth is —4,000 shares in both cases, but the order is clearly
much more unusual for firm A. To adjust for this effect, we normalize
all order sizes, depths, and excess depths by the average quoted depth
for the firm. In the example, this would mean that the order for 6,000
shares of firm A represents a normalized excess depth of —4, and
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the order for 20,000 shares of firm B represents a normalized excess
depth of —0.2. We check whether this normalization is appropriate by
regressing the residuals from the regressions of price improvement on
depth and order size on the average depth for the firm.

Figure 2 shows the results of the regressions for all orders at 1/8
spread and all orders at 1/4 spread, where the excess depths have
been normalized as described above. As in Figure 1, the dashed curves
are two standard errors above and below the smooths.!® There are
three important features illustrated by the graphs in Figure 2. First, the
general shape of the smooths for orders at 1/8 spread and orders at 1/4
spread are similar, both showing a zero expected price improvement
for orders equal in size to the quoted depth. Note that even if the nor-
malization used is imperfect, it has little effect for orders with excess
depth near zero. Second, as we discuss more fully below, the shape
of the curves exhibits substantial nonlinearity. Finally, the impact of
excess depth on price improvement is economically important. For
orders at 1/4 spread, the conditional mean price improvement ranges
from roughly 8 cents for (normalized) excess depth greater than 1 to
roughly —9 cents for orders with excess depth of —1. Thus, in any
application where the size of the spread is important, the size of ex-
pected price improvement and its relationship to excess depth is also
likely to be important.

The nonlinearity of the relationships in Figure 2 bear further dis-
cussion because it is at the heart of the question of whether the non-
parametric regression techniques are an important improvement over
simpler approaches, particularly OLS. We have added additional lines
to Figure 2 depicting two sets of least-squares estimates. The dotted
lines show simple linear OLS estimates of the relationship between
price improvement and excess depth. The data are concentrated in the
region with positive excess depths, so the OLS estimates primarily re-
flect this region (where the relationships are fairly flat). Consequently,
the OLS relationships incorrectly predict positive price improvement
for large orders. Estimating a dummy variable for negative excess
depth (not shown), as in Petersen and Fialkowski (1994), does result
in negative estimates for price improvement in this region, but this ap-
proach can’t capture the drop in price improvement as excess depth
approaches zero (as the order size approaches the excess depth). If
both linear and dummy variable specifications were included in the

The regression curves and standard errors were calculated using the same robust technique as
in Figure 1 (see also Section 2.1). Unlike the single firm regressions in Figure 1 where there
were some slight differences, the smooths estimated without the robust adjustments are virtually
identical to those shown in Figure 2. Since the robust reweighting seems to have little or not effect
in full sample regressions and it is more complex, it is not used in the remainder of this article.
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same regression, the experienced econometrician would likely rec-
ognize that the relationship has important nonlinearities and would
move on to examining other functional forms. It is possible that a
well-executed search would ultimately lead to estimated relationships
similar to those shown in Figure 2. To reach this point would take
some care, however, because while the region with negative excess
depths is clearly economically interesting, it contains relatively few
data points. Consequently, estimated parametric relationships could
fit poorly in this region and still have reasonable mean squared er-
ror. The advantage of the nonparametric regressions is they provide
an immediate picture of the relationship that makes the nonlinearity
obvious. Although their implementation is more complex than linear
OLS, it is considerably simpler than the search for arbitrary parametric
functional forms.

After seeing the shape of the smooths in Figure 2, it appears that
the relationship between price improvement and excess depth could
be closely approximated by piecewise linear functions with the knot
points located where the smooths bend abruptly downward. Of course,
it is important to remember that this observation is made after seeing
the nonparametric regressions, so it can’t be an a priori argument for
using only this technique. Once the smooths have been estimated,
however, it might be desirable to have characterizations of the rela-
tionships that are more convenient than the list of values at grid points
that defines each smooth. The lines in Figure 3 with alternating long
and short dashes show least-squares estimates of piece-wise linear
functions, where the locations of the knot points are estimated along
with the slopes and intercepts. These functions follow the smooths
quite closely. For both 1/8 and 1/4 spreads, the lines to the right of
the knot points are quite flat, and the knot points both occur at pos-
itive excess depths (excess depth of .24 for 1/8 spreads and .42 for
1/4 spreads). The slopes of the lines to the left of the knot points are
.09 for 1/8 spreads and .12 for 1/4 spreads.

In order to check whether the excess depth variable fully captures
all of the interactions between depth and order size in the joint deter-
mination of expected price improvement, we examine loess surfaces
that jointly condition on depth and order size. Figure 3 shows con-
tour plots of these surfaces for all orders at 1/8 and 1/4 spreads. To
allow aggregation across all firms, we continue to normalize depth
and order size by dividing by the mean quoted depth for each firm.
The contour plots are shown over the range of order sizes and quoted
depths up to three times the average quoted depth. This region was
selected because it contains over 95% of the orders used to estimate
the surface for each smooth. Note that if excess depth perfectly charac-
terized these joint relationships, all of the contours would be straight
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Contour plots of loess surfaces—price improvement regressed on depth and order size
The curves show constant contours of the expected price improvement surfaces, measured in
dollars per share, estimated using a two-dimensional loess regression with a spanning parameter
of .25. The surfaces are estimated over the entire range of the data, but the plots are restricted to
the region where depth and order size are less than three times the average depth for the firm.
In each case, this region contains more than 95% of the observations.

lines with 45-degree slopes. This characterization does seem to be
a fair description of the surfaces, confirming that excess depth ap-
pears to provide a good one-dimensional parameterization of these
relationships. However, the contour lines appear to be flatter than 45
degrees in the lower halves of the figures. This seems to indicate that
for very small orders, there is a limit to the amount of price improve-
ment. That is, the expected price improvement for a very small order
doesn’t increase very much with larger and larger depth. This fea-
ture of the relationship is not captured in a one-dimensional excess
depth smooth. Accordingly, we use the surfaces shown in Figure 3 to
estimate the profits from trading strategies in the next section.!!

2.3 Other conditioning variables

Although the above results suggest depth and order size are important
predictor variables, it remains to be seen if other variables such as vol-
ume are important, given the functional relationship already captured
by spread, depth, and ordér size. To assess the potential importance
of the other conditioning variables shown in Table 1, we regressed the
residuals from the surfaces shown in Figure 3 on each variable. Table 3

1 Orders at spreads of more than 1/4 were grouped together and price improvement was measured
as a percent of spread. A single surface was estimated for these orders. The same procedure was
used for orders at spreads of less than 1/8, and/or when the stock price was less than or equal
to $2.
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provides summary statistics from these regressions.!? The maximum
and minimum columns reflect the extremes of the conditional esti-
mated residual price improvement over the range of the conditioning
variable that excluded the top and bottom 1%. We make this exclu-
sion because the regression estimates in these extreme regions are
very noisy due to sparse data. The minimum and maximum statistics
give some indication of the potential additional improvement in fit
that could be obtained by adding the variable to the estimation. The
columns labeled “Slope” give the difference in the simple mean of the
residuals for the top and bottom decile of the conditioning variables.
This statistic gives a rough indication of whether there is a mono-
tonic relationship between price improvement and the conditioning
variable (after controlling for spread, depth, and order size). Monte
Carlo estimates of these parameters obtained by randomly assigning
the residuals to the values of the conditioning variable indicate that
almost all of the values in the table are statistically significant at tradi-
tional levels. This isn’t too surprising, given the extremely large sample
size. Accordingly, the issue is whether the regressions in Figure 3 have
captured most of the economically interesting effects.

In the next section, we use only spread, depth, and order size to
estimate price improvements. Table 3 seems to indicate that by omit-
ting the remaining variables we are missing somewhat larger price
improvements associated with large firms (which will also have high
volume, high price, and high quoted depths) and larger price improve-
ments for sell orders. Virtually any strategy will ultimately make equal
numbers of buy and sell orders, so the difference in price improve-
ments between buys and sells should cancel out. Also, the trading
strategies evaluated in the next section switch the entire portfolio in-
vestment back and forth between small and large firms, so we will
underestimate the costs of trading in small firms and overestimate the
cost of trading in large firms by similar amounts. It should be noted,
however, that it could be important to include some of these other
variables when evaluating strategies that concentrate trading in either
small or large firms.

The Predictability of Small-Firm Returns

In this section we use the fitted relationship developed in the last
section to estimate the profit from a trading strategy that attempts to
exploit the predictability of small-firm returns using both lagged small-

These regressions use a spanning parameter of .5, as opposed to the .25 used in the depth and
order size regressions, because several of the conditioning variables, particularly firm size and
mean depth, have a high degree of clustering.
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Table 3

Summary statistics from residual regressions

Conditioning 1/8 spreads 1/4 spreads

variable Minimum  Maximum Slope Minimum Maximum Slope
Mean depth —.009 .010 .004 —.016 .018 .028
Firm size —.009 .016 .022 —.008 .018 026
Share price —.008 .026 .024 —.013 .024 .022
Volume —-.007 .026 .023 -.013 .015 .023
Order imbalance —.004 .009 —.003 —.007 .024 -.011
Volatility —.012 .017 021 —-.010 .018 .020
Inside spread (%) —.009 .009 .004 —.023 .016 .029
Order direction -.002 .002 .004 —.006 .006 .012

This table shows the results of nonparametric regressions of the residuals from the bivariate
surfaces shown in Figure 3 on other conditioning variables. Minimum and maximum are the
minimum and maximum values of the estimated conditional expected residual price improvement.
These statistics are measured over the region of the conditioning variable that excludes the 1%
largest and smallest values. The slope statistic is the difference between the mean residuals for
the 10% largest and 10% smallest values of the conditioning variable. Mean price improvements
are larger for sells than for buys. Accordingly, for the last line in the table, the minimum columns
show the mean residual for buys, the maximum columns show the mean for sells, and the slope
column shows the difference.

firm returns and lagged large-firm returns. We use a nonparametric
regression to show how the expected return on small firms depends
on various combinations of lagged small- and large-firm returns.!
This leads to the specification of the particular trading rules that we
test. The returns from these strategies must be compared to some
benchmark, and this leads to the investigation of the realized returns
from equally weighted and buy-and-hold portfolios.

It will be necessary to apply the strategies to a sample of ISSM
data, which are available for 1988 to 1992. Accordingly, the first step
is to calculate small- and large-firm portfolio returns using most recent
transaction prices for the 1988 to 1992 period and then to show that
this data set exhibits cross- and autocorrelations similar to those found
by Lo and MacKinlay (1990). The first column of Table 4 reproduces
the correlation coefficients found by Lo and MacKinlay for weekly
returns from 1962 to 1987. They measured returns from Wednesday
to Wednesday and selected all CRSP NYSE, and AMEX firms with no
missing weekly returns for the entire sample period. These firms were
then divided into five size portfolios, based on their market capital-

13 Note that the cross- and autocorrelations merely suggest the existence of profitable strategies.
To find them, we must see which combinations of lagged small- and large-firm returns lead to
unusually high (or low) current small-firm returns.
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gbrﬁlitions between small- and large-firm portfolio returns
1962-1987 1988-1992
Lo and MacKinlay NYSE only/ ISSM
results overlapping CRSP m

Contemporaneous 75 .80 .55 .56 .58
Autocorrelations

Small 33 .27 .39 .40 43

Large .04 .06 —.09 —-.08 —.08
Cross-autocorrelations

Small to lag large .28 .25 .21 22 .22

Large to lag small .02 .02 —.04 —.04 —.04
Individual return autocorrelations

Small -.079 —.043 -.070 —.074 —.046

Large —.013 —.034 -.078 —.076 —.070

The table shows simple sample correlation coefficients for weekly returns on a portfolio comprised
of large firms and a portfolio comprised of small firms. The last two rows of the table show the
average autocorrelations for the individual firms contained in each portfolio. The first column
reproduces the results from Lo and MacKinlay (1990), which are based on CRSP closing prices.
The second column shows the results for the same time period as in Lo and MacKinlay, also using
CRSP closing prices, but using only NYSE firms, using overlapping observations, and using only
the information available at the time of portfolio formation. The final three columns all use our
portfolio formation methodology, and compare the results from calculating returns using CRSP
closing prices, the last trade as of 11:00 A.M., and the current quote as of 11:00 A.M.

ization in the middle of the period. The table shows the results for the
smallest and largest of the five size portfolios. The final two entries in
the first column are the averages for the individual firm weekly return
autocorrelations for the smallest and largest size quintiles of NYSE and
AMEX stocks that had at least 52 nonmissing weekly returns.

Lo and MacKinlay’s (1990) data selection procedures introduce
“look ahead” biases because firms with return data for the entire sam-
ple period neither went bankrupt nor were acquired. Also, firms that
are in the smallest market capitalization quintile as of the middle of
the sample period are more likely to have had poor performance up
to that point, whereas the opposite is true for the firms in the largest
quintile. Lo and MacKinlay investigated the potential effect of this sur-
vivorship bias by splitting the sample period in half and performing
the analysis on all firms that existed for each subperiod. Based on the
fact that the correlation and autocorrelation results for these subpe-
riods were very similar to those for the full sample, they concluded
that this bias did not have an important effect. In this article we are
focusing primarily on profits from trading strategies, so we felt that it
was important to construct a data set that is free of these biases.
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We simulate the profits from our trading strategies over the period
from 1988 through 1992. We measure firm market capitalization as
of June 30 of each year (from 1987 to 1992). NYSE-listed firms with
June 30 market capitalization above (below) the top (bottom) quintile
breakpoints for all NYSE-listed firms, except ADRs, are included in
our sample for the following 12 months (6 months for the first half of
1988 and six months for the second half of 1992).'4 For the firms that
were delisted, we use the delisting value from CRSP to calculate the
final return and liquidation value. If this value is missing we use the
price immediately before delisting, effectively assuming the security
is sold on the last day of NYSE trading. We use only NYSE firms to be
consistent with the coverage of the TORQ database.

The CRSP database was used to select the firms and obtain closing
price, dividend, split, and delisting information. The ticker symbols for
these firms were then used to extract intraday information from ISSM.
This process required some manual intervention, because CRSP data
contain only the “base” three letter ticker symbol and the share class.
The actual exchange ticker symbol may or may not include a one
letter extension that is equal to the class. For example, although both
are designated as class “A” securities, the ticker symbol for Nova Corp
is NVA and the ticker symbol for First Republic Bank Corp is FRB.A.1°
Another matching problem occurred because a firm’s ticker symbol
changes periodically, and in a few cases the dates of the changeover
recorded in CRSP did not agree with the dates when the old symbol
disappeared and the new symbol appeared in ISSM. In these cases,
the ISSM changeover dates were used.

The ISSM database was used to extract the last trade price and the
existing NYSE specialist's quote as of 11:00 A.M. Accordingly, when
simulating the profits from trading strategies, all orders are assumed
to be submitted as of 11:00 a.M. This time of day was chosen in order
to maximize the probability of there being a good quote. Also, quoted
liquidity seems to be highest in the middle of the day [see Lee, Muck-
low and Ready (1993)]. By comparing the ISSM quote prices to the
closing prices from CRSP, we were able to confirm that our match-
ing procedure described above had been successful. We were also
able to implement some data screens to eliminate potential reporting
errors in ISSM. The most common of these errors are transpositions,

' The one exception to this selection rule is that we exclude Berkshire Hathaway. Due to the
extremely large share prices and spreads, we were not confident that we could use the results
from the nonparametric estimates of price improvement.

15 In most cases, the exchange adds an extension to the base ticker symbol to distinguish the stock
from another with the same base ticker symbol, usually issued by the same firm. In the case
of FRB, however, there was another issue with the same ticker symbol that traded through the
middle of 1988.
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for example an ask price of $53 instead of $35, and dropping digits,
for example $4 instead of $40. Errors of this type result in large (or
negative spreads) and a midpoint of the quote that is very different
from the CRSP closing prices. ISSM already employs some screens to
eliminate potential errors by looking at adjacent prices. In addition to
these screens we considered a quote price to be missing if the spread
was zero or negative or if it was more than four times the median
spread level for the firm.'® A quote was also considered to be miss-
ing if the midpoint was outside of the range defined by the closing
price of the previous and current days by a percentage amount that
equaled more than three standard deviations of the daily return. These
screens eliminated 207 of the more than 800,000 quote observations
in the database.

In order to increase the information gleaned from the sample pe-
riod, we use overlapping observations, as in Boudoukh, Richard-
son, and Whitelaw (1994). Thus, in contrast to the Wednesday-to-
Wednesday returns used by Lo and MacKinlay (1990), we construct
five sequences of returns, one for each day of the week. The second
column of Table 4 shows the correlation coefficients for the period
covered by Lo and MacKinlay’s data using our sampling methodology.
The data include overlapping observations for portfolios formed from
all small and large NYSE-listed stocks existing as of June 30, including
those subsequently delisted. As in Lo and MacKinlay, the portfolios
are equally weighted and rebalanced each week. As can be seen from
Table 4, using our sampling methodology yields a higher contempo-
raneous correlation between the small- and large-firm portfolios and
a lower autocorrelation for the small-firm portfolio. For the most part,
both of these differences are probably explained by the fact that we
exclude AMEX firms, many of which have very low market capital-
izations. The final two entries are the averages of the individual firm
autocorrelations using overlapping return intervals. The averages are
calculated using all firms with at least 250 adjacent pairs of weekly re-
turns (overlapping observations are used, so this is roughly equivalent
to the 52-week minimum imposed by Lo and MacKinlay).

The final three columns of Table 4 show autocorrelations for the
1988 to 1992 period. The first of these three columns uses CRSP clos-
ing prices, the second uses the last trade price as of 11:00 A.M., and the
third uses the quote midpoint as of 11:00 A.M. Although the correla-
tions are remarkably different for the more recent sample period, with

16 The median was calculated using only quote observations with midpoints from 25% lower than
to 50% higher than the midpoint of the quote in question. Without such an adjustment, a few
observations either before or after a large split or reverse split could be incorrectly classified as
outliers.
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lower contemporaneous correlation between small and large firms
and larger autocorrelation, there is little difference between the three
different data sources for the period. It is interesting that the correla-
tions are not sensitive to the time of day used to measure prices, which
can be seen by comparing the results from CRSP data to those from
ISSM data. Further, the fact that the small-firm portfolio autocorrelation
is largely unchanged using quote-to-quote returns indicates that the
autocorrelation is not a result of nonsynchronous trading. This finding
is consistent with Mech (1993), who finds the same result using port-
folios of NASDAQ firms. In fact, Mech goes further and shows that
4-day return intervals separated by an intervening day (where there
was at least one trade) have essentially the same autocorrelation as
is observed for adjacent 5-day periods. He argues that this means the
autocorrelation does not result from “stale quotes.” Of course, for our
purposes it is not important whether stale quotes are part of the reason
for the autocorrelation in quote-to-quote returns. Whatever the cause
of the autocorrelation, our primary focus is determining whether it
can be profitably exploited.

The averages of the individual firm autocorrelations for the 1988 to
1992 period are shown in the last three columns of the final two rows
of Table 4. We used all firms with at least 50 adjacent weekly returns,
including overlapping intervals. These average autocorrelations are
all negative as in the earlier period, but unlike the earlier period,
the large-firm autocorrelations are similar in magnitude to those of
small firms. This result is probably an artifact of the realized sample
path for the entire market over the 1988 to 1992 period, as revealed
in the autocorrelation for the large-firm portfolio. As shown in the
final column, using quote midpoints eliminates the effect of bid-ask
bounce, substantially reducing the average small-firm autocorrelation,
but leaving the average for the large firms unchanged.

3.1 Designing a trading strategy
The profitability of a trading strategy will ultimately depend on the
execution prices of the trades, which will depend in turn on the size
of the transactions. Thus, when defining a trading strategy, it is nec-
essary to specify the size of the investment as well as the trades that
will be made. Since larger trades will tend to get poorer execution,
a larger investment strategy will tend to have poorer performance as
measured in rate of return. However, institutions that might consider
a strategy incur fixed costs for development and implementation, so a
high potential return on a small investment is economically uninterest-
ing. With this in mind we consider a strategy with an initial investment
of $5 million.

Suppose we begin 1988 with $5 million and we decide to invest
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$1 million in each of five dynamic portfolios. For the first of these
five portfolios, changes in holdings will be made on Monday at 11:00
AM., changes for the second will be made on Tuesday, and so on. At
each decision point we will decide whether to invest all of the funds
either in a portfolio of small firms or a portfolio of large firms, and our
decision will be based on the past week’s returns for these two “size”
portfolios. When we switch, we take equal positions in all of the firms.
If we do not decide to switch portfolios, no changes are made in our
holdings (we do not rebalance to reestablish equal weights). We will
assume for the moment that our objective is to maximize expected
return; later we will assess risk by comparing the return to a strategy
of buy and hold.

If there are no transaction costs, then the assets should always be in-
vested in whichever size portfolio has the higher conditional expected
return. To calculate the difference in conditional expected returns, we
use the same nonparametric regression techniques developed in Sec-
tion 2. To avoid bias that could result from overfitting in the sample,
we use the 1962 to 1987 data to estimate the conditional expected
returns and determine the trading rules, and we use the 1988 to 1992
ISSM data to evaluate the profitability.!” We also show that the strategy
can be improved by requiring the conditional expected difference in
returns to be above some minimum amount before deciding to switch
between the two portfolios. We consider both 0.5% and 1% as poten-
tial minimum cutoffs. Finally, we consider “optimizing” the strategy
by trading only in the subset of firms with lower transaction costs.

To get a preliminary feel for the importance of transaction costs
in implementing the proposed trading strategy, Table 5 shows the
average spreads and depths for the small and large firms in our 1988
to 1992 sample. For reference, we also report the data for the firms in
the Dow Jones Industrial Average. In addition to providing indicative
transaction costs for the particular strategy presented here, the data in
Table 5 can be used for analysis of other trading strategies.

The numbers in Table 5 are the means of the individual firm means,
and the numbers in parenthesis are the medians of the individual firm
medians. The percentage effective spread was calculated using the
quoted spread and depth as of 11:00 a.M., subtracting the sum of the
estimated price improvements for both a buy and a sell order, and then
dividing by the quote midpoint. The price improvement was estimated
using the smooths from Section 2. We estimated the effective spreads

It turns out that the profits are not much higher if we use the 1988 to 1992 data to estimate the
conditional returns. Just as in the earlier period, the conditional expected difference between
small- and large-firm portfolio returns is positive following positive small-firm portfolio returns
and negative otherwise.
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Table 5
Estimated effective spreads by order size
Large Small
DJIA NYSE NYSE
Percentage effective spreads
$3,000 order 0.22 0.29 5.41
(0.18) 0.25) (2.34)
$10,000 order 0.23 0.32 7.22
0.19) 0.27) 3.29)
$30,000 order 0.26 0.39 10.71
0.22) (0.33) (5.02)
Quoted spreads
Dollar $.19 $.23 $.20
($.125) (8.25) ($.25)
Percent 0.41 0.58 5.45
0.34) 0.52) (3.23)
Dollar quoted depth $541,850 $314,430 $32,552
($392,330) ($191,530) (813,594

The table shows the average effective spread using the ISSM spread and depth as of 11:00 a.m.
along with the estimated price improvement relationships estimated in Section 2 and depicted in
Figure 3. All firms are listed on the NYSE. Large and small refer to the top and bottom NYSE size
quintiles. The numbers are calculated by taking the mean of the individual firm means, and the
numbers in parenthesis are the median of the individual firm medians.

for orders or $3,000, $10,000, and $30,000. Note that the simulated
trading strategies will initially divide $1 million equally across about
280 firms, so the average trade sizes will be in the $3,000 to $4,000
range.

Table 5 shows that both quoted and effective spreads are quite
small for large firms, and that one can expect price improvement on
fairly large orders. In fact, for firms in the Dow Jones Industrial Aver-
age, even orders of $30,000 can expect substantial price improvement.
In contrast, the quoted and effective spreads for small firms are very
large as a percent of price. This is important for any trading strategy
that makes frequent trades in small firms. For example, we show that
a strategy that attempts to exploit any difference in expected returns
between small and large firms will switch portfolios roughly 20 times
per year, which means 10 round-trip transactions for both small and
large firms. Given that average trade prices start in the neighborhood
of $3,000, this implies cumulative transaction costs of roughly 52%
for the small-firm trades as compared to about 5% for the large-firm
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Figure 4

Loess smooth of the difference between small- and large-firm returns regressed on lagged
small-firm returns

The vertical axis measures the contemporaneous difference in weekly return between a portfolio
of small firms and a portfolio of large firms. The horizontal axis measures the previous week’s
return on the small-firm portfolio. The points are weekly observations from 1962 to 1987. To
avoid obscuring the smooth from view, nearby points have been deleted.

trades.'® Of course, since some of the strategies will quickly lose large
amounts of money, the trade sizes in later years will be smaller. This,
in turn, will result in somewhat lower average transaction costs.

We begin the design of the trading strategy by examining the infor-
mation in lagged small-firm portfolio returns. Figure 4 shows a scat-
ter plot of the difference between the weekly returns on the small-
and large-firm portfolios against the lagged value of the small-firm
portfolio return for the 1962 to 1987 period. The curve is the non-
parametric regression estimate of the conditional expected difference
between the small- and large-firm portfolio returns. Separate nonpara-
metric regressions (not shown) of the small- and large-firm portfolio
returns on lagged small returns show that the predictability of the dif-

'8 The magnitude of the transaction cost effect depends on the pretransaction cost returns on the
portfolio. For example, if prices increase by 30% and there are 10 round-trip transactions each
costing 5%, the cumulative return is 1.3 x .95'° = .78. This is about 52 percentage points lower
than the return measured before transaction costs.
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Contour plot of loess surface—difference between small- and large-firm returns
regressed on both lagged small- and large-firm returns

The curves show constant contours of the expected difference in return between a portfolio of
small firms and a portfolio of large firms, conditioned on the previous week’s return for both
portfolio’s. The surface is estimated over the entire range of the data, but the plot is restricted
to the region where the previous week’s returns on the two portfolios were within 8% of each
other. This region contains more than 99% of the observations.

ference in returns primarily stems from the predictability of small-firm
returns. This is consistent with the data reported in Table 4, in that
the autocorrelation in small-firm returns for the 1962 to 1987 sample is
.25, whereas the cross-autocorrelation between large-firm returns and
lagged small-firm returns is only .02. Based on the figure, it appears
that a good strategy would be to invest in the small-firm portfolio
whenever its previous week’s return is positive.

The next step in developing the trading strategy is to incorporate
the information about lagged large-firm portfolio returns. The resid-
.uals from the regression in Figure 4 are essentially uncorrelated with
the lagged returns on the large-firm portfolio, but this does not im-
ply that there is no information in lagged large-firm returns because
correlation is a linear measure. To put it another way, zero correla-
tion does not imply statistical independence, and there is no ex ante
reason to restrict our attention to linear relationships. Figure 5 shows
a contour plot of the loess two-dimensional regression of the differ-
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ence between small- and large-firm portfolio returns on both lagged
small- and large-firm portfolio returns. The surface is shown over a
region where the difference between the lagged portfolio returns is
< 8%, and this region contains over 99% of data points. Although
the loess smoother does produce estimates for the relationship over
a much larger region, it is difficult to draw reliable inferences beyond
the support of the data.

It is clear from Figure 5 that if one were to ignore transaction
costs, the trading strategy need only consider lagged small-firm re-
turn. This is because the expected difference is positive in the right
half of the figure (this is the region where lagged small-firm return
is positive). However, the relationship is not generally independent
of lagged large-firm portfolio returns. (If it were, all of the contour
lines in Figure 5 would be vertical.) Accordingly, when we consider
trading strategies that only switch if the expected difference in returns
is larger than either 0.5% or 1%, we use the surface shown in Figure 5.

Comparing Table 5 to Figure 5 yields a preview to the potential
profitability from the trading strategies. Approximate one-way transac-
tion costs are half of the effective spread, or about 3% for small firms.
Accordingly, trading rules that switch between the two size portfo-
lios when the difference in weekly expected returns is 0%, 0.5%, or
1% seem bound to lose money. We could select higher cutoffs for
the switch point, but the problem is that conditional differences in
expected return larger than 1% are very rare events. Of course, it is
theoretically possible for the rules to succeed in spite of the results in
Table 5, for two reasons. First, a positive expected difference in next
week’s return may be followed by continued excess returns in later
weeks [see Badrinath et al. (1995)]. Second, it could be the case that
the switch points chosen by the strategy happen to be times of lower-
than-average spreads or higher-than-average depths. In any case, we
feel it is important to complete the simulations to drive home our
main point, which is that transaction costs must be considered before
drawing any conclusions about the importance of predictability of re-
turns. In addition, the results below include an interesting comparison
between equally weighted and buy-and-hold portfolio returns.

The calculation of the profits from the trading strategies are de-
scribed below for the Monday portfolio; the process is repeated for
each day of the week. The $1 million starting value is invested in either
small or large firms on the first Monday of 1988 depending on whether
the previous week’s small-firm portfolio return was positive or nega-
tive (this meant four of the five portfolios began with an investment in
small firms). The investment was made only in firms that had a good
quote on that day (over 99% of the firms/days have good quotes).
The investment was split equally among the qualifying firms, and the
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number of shares acquired was calculated three different ways: using
the last trade price; using the quote midpoint; and using the estimated
transaction price based on the quoted spread, depth, dollar amount
invested, and the estimated price improvement interpolated from the
smooth in Section 2. Accordingly, for each day of the week there are
three portfolios for each trading rule under consideration.

On the next trading Monday, the strategy determines whether a
switch is appropriate. For example, if the portfolio currently holds
small firms and the return for the small-firm portfolio over the previous
week was negative, then the strategy that switches to capture any
difference in expected returns will dictate a changeover to large firms.
A switch is made by selling all of the current shares at the last trade
price, the quote midpoint, or the estimated execution price. If there is
no good quote on the sale day, all three portfolios assume a costless
sale of that firm’s shares at the most recent transaction price. The share
amounts are adjusted for any splits since the stocks were purchased
and all dividends are assumed to be costlessly reinvested at the closing
prices. The net proceeds from any delisted firms are calculated using
the CRSP delisting amount if available, or by assuming a sale on the
last trading day at the most recent trade price. The total proceeds from
the sale of the securities and delistings are then split evenly among
all firms in the new size portfolio that have good quotes and are
reinvested. The positions are liquidated on the final trading Monday
of 1992. The average annual return for a particular strategy and trade
price assumption is calculated by taking the total liquidation proceeds
from all five days, dividing by the $5 million initial investment, taking
the fifth root, and subtracting one.

The results of using the trading strategies over the 1988 to 1992 pe-
riod are shown in Table 6. As a reference point for the performance of
the dynamic strategies, we note that the 5-year average annual return
for a buy-and-hold strategy was 12.9% for large firms and 9.3% for
small firms. To calculate the profits from these buy-and-hold strate-
gies, only firms with good quotes at the beginning 1988 are used. Any
proceeds from delisted firms are equally invested among the remain-
ing firms. Accordingly, the return measured using estimated execution
prices differs from the return estimated using quote midpoints because
of transaction costs incurred at initial investment, final liquidation, and
reinvestment of delisting proceeds.

The strategy that switches portfolios to try to capture any return dif-
ference generates large excess returns ignoring transaction costs, but
substantial losses when transaction costs are included. These losses
are due to the large spreads for small firms, combined with the fact
that the strategy makes about 10 round-trip transactions per year. The
strategies that wait for larger expected return differences do much bet-
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Table 6
5-Year average annual returns from various trading strategies

Last Quote Estimated Annual
Strategy trade price midpoint execution price turnover (%)

Switch if expected return difference is

0.0% 30.3 29.0 —52.8 2,036
0.5% 20.6 204 -8.2 480
1.0% 13.7 13.6 5.0 131

Invest only in lower spread stocks,

Switch if expected return difference is

0.0% 239 241 —-21.3 2,036

0.5% 20.0 20.0 6.0 480

1.0% 15.6 15.7 11.6 131
Buy and hold

Small 10.0 10.0 9.3 0

large 13.0 13.0 12.9 0
Equally weighted

Small 14.6 14.2 —8.1 146

Large 14.1 14.0 13.2 62

The table summarizes the profitability of trading strategies that switch between a portfolio of large
firms and a portfolio of small firms. All switches are made at 11:00 a.m., based on the expected
return difference depicted in Figure 5. There are five portfolios, each with initial value of $1
million, one for each day of the week. Profits are simulated using three different assumptions
for transaction prices: the last trade price, the midpoint of the current quote, and the estimated
transaction price including estimated price improvement. The annual turnover is the percent of
the portfolio value sold, so annual turnover of 2,036% means that 20 switches are made each year
(10 round-trips). The returns are calculated by taking the total ending value of the five portfolios,
dividing by $5 million, taking the fifth root, and subtracting one. The table also shows the results
of restricting the strategy to the half of the stocks with the lowest estimated effective spread as a
percent of price.

ter after transaction costs but do not match the simple buy-and-hold
strategy. The profitability of the strategies using quote midpoints and
the losses using expected transaction costs are both consistent with
Mech'’s (1993) hypothesis that small firms may have delayed reactions
to information because the delay can’t be profitably exploited.

The switching strategy forms equally weighted portfolios at each
switching point, so it might be natural to use equally weighted returns
as a benchmark for comparison to the profits from the size-based port-
folio trading strategy. In so doing, however, it must be recognized that
the equally weighted portfolio is itself a dynamic portfolio that entails
weekly rebalancing. In order to keep a constant proportion of wealth
invested in each stock, it is necessary to sell some of the shares that
increased in value and buy more of the shares that declined in value.
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In calculating the benchmark equally weighted returns in Table 6, we
again assumed five different portfolios, each with $1 million initial
investment, rebalanced once a week. On average, the weekly rebal-
ancing trades were 1.2% of total portfolio value for the large-firm
portfolio and 2.8% for the small-firm portfolio. Accordingly, average
annual turnovers were 62% and 146%, respectively. The table indi-
cates that for large firms, it doesn’t matter much whether returns are
measured using equally weighted or buy-and-hold portfolios, and the
effect of transaction costs is relatively small. In contrast, comparison of
the equally weighted and buy-and-hold returns for small firms yields
two important results. First, the equally weighted portfolio appears
to outperform the buy-and-hold portfolio, whether transactions are
assumed to occur at the last transaction price or at the midpoint of
the current quote. Using the quote midpoints eliminates the effect of
bid-ask bounce, so the results indicate that the difference between the
equally weighted and buy-and-hold portfolios stems either from con-
trarian profits or cross-predictability. Second, after transaction costs,
the equally weighted portfolio has a lower return than the buy-and-
hold portfolio. These results confirm the assertions by Blume and
Stambaugh (1983) and Roll (1983) that it is better to analyze small-
firm portfolios using buy-and-hold strategies.

Although we have looked at improving the trading strategies by
making fewer round-trips, it would also be natural to try to make
them sensitive to transaction costs by adjusting the relative invest-
ments in the various securities. This task can be quite difficult. It may
not be optimal to simply reduce the trading in the highest transaction
cost securities, because these may be the stocks that most strongly
exhibit the behavior that the strategy is trying to exploit. To provide
an indication of whether it is possible to improve on the switching
strategies in this manner, we simulated the strategies using only the
half of the firms at each switch point that had the smallest estimated
effective spread as a percent of price. The results in Table 6 show that
this does indeed reduce the transaction costs incurred by the strate-
gies, as evidenced by the smaller return difference between the quote
midpoint and estimated transaction price columns. However, another
impact from adjusting the strategy in this manner is a drop in the last
transaction price and quote midpoint returns. This provides further
evidence that predictability is primarily a feature of high transaction
cost stocks that survives because it can’t be profitably exploited.

Conclusion

In this article we use nonparametric regression techniques to show
that conditional expected price improvement is strongly and nonlin-
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early related to the difference between quoted depth and order size.
This dependence is important for the estimation of profits from trad-
ing strategies because it means that the profits will depend critically
on the size of the positions taken. This is particularly true for small
firms, where the average effective spreads range from 5% to 11% of
the stock price as order size ranges from $3,000 to $30,000.

We use the estimated relationship between price improvement and
the conditioning variables to evaluate the profitability of trading strate-
gies that a switch between small- and large-firm portfolios in an at-
tempt to exploit the predictability of small-firm returns. We find that
the naive strategy that attempts to exploit any difference in condi-
tional returns, regardless of the size of the difference, is swamped by
the transaction costs. Strategies that only trade on larger conditional
differences do better, but they appear to underperform the returns
from a simple buy-and-hold strategy. '

We also consider a modified strategy that avoids investment in the
stocks with wider spreads. Although this does improve the returns
after transaction costs, the pretransaction cost returns fall. Moreover,
the returns after transaction costs still fall short of a simple buy-and-
hold strategy. In summary, it appears that predictability is primarily a
feature of high transaction cost stocks that survives because it can’t
be profitably exploited.

Appendix A

In this appendix we give explicit definitions of the variables used in
this article. The definitions are listed alphabetically.

Depth (at bid, at ask, average): based on NYSE quotes. When esti-
mating price improvement, for a market buy order this is the depth at
the ask, and for a sell order it is the depth at the bid. Average depth is
the average of the two depths over all days for the firm, and is used
as a normalization for depth and order size when estimating the con-
ditional price improvement from the pooled sample of all firms. We
also regress the residuals from this pooled regression against average
depth to check that the normalization “fits.”

Execution Price: the trade price for the market order, given by the
variable EXECPR in the TORQ database. In cases where the order was
executed in separate pieces at different prices, the TORQ database in-
cludes several records in a set, and the Execution Price is the volume-
weighted average. These are the instances that result in price im-
provements that are not even multiples of 1/8. Volumes executed at
each price are calculated by summing the TORQ variables CONQTY1
through CONQTY#4 for each record.

Excess Depth: difference between order size and depth at the ask
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(bid) at the time a buy (sel) order was submitted, normalized by
average depth.

Firm Size (Market Capitalization): the market value of outstanding
equity as of June 30, given by YRVAL(CAP,D) in the CRSP database.

Order Imbalance: difference between the numbers of shares clas-
sified as buy and sell over the last 6.5 hours using the Lee and Ready
(1991) algorithm. Note that the TORQ database allows unambiguous
identification of trades triggered by market orders when the orders are
transmitted to the floor via SuperDOT. The Lee and Ready algorithm
will misclassify some of these trades; however, it was desirable to de-
velop a statistic that could be calculated for both TORQ and ISSM,
and the market order information is unavailable in the ISSM database.

Order Direction: +1 for a buy order and —1 for a sell order. Di-
rection is given for all market orders by the OSIDE variable in the
SOD file in the TORQ database. When evaluating the profitability of
a trading strategy, the strategy generates buy and sell orders.

Order Size: number of shares executed for the market order in the
TORQ database. The data giving the execution of a market order can
span several records in the TORQ database, particularly when the
record is filled at multiple prices. The order quantity was calculated
by summing the values of the TORQ variables CONQTY1 through
CONQTY4. This kept the order size calculation consistent with the fill
price, which was calculated as the average across the orders in the
set, weighted by these volumes. In rare instances, the other variables
giving order size (OSHRS and RSHRS) would give different answers.
This variable is normalized by average depth. When evaluating the
profitability of a trading strategy, the strategy dictates the order size.

Percent of Trades Inside the Spread: number of trades that occur
inside the quoted spread divided by the number of trades that occur
when the spread is greater than the minimum tick size. Both numbers
are calculated over the last 6.5 trading hours.

Price Improvement: NYSE ask — execution price for a buy order
and execution price — NYSE bid for a sell order. Quotes are measured
at the time the order was submitted, given by the OTIME variable in
TORQ.

Spread Midpoint: (ask + bid)/2, based on NYSE quotes when the
order was submitted.

Spread (Width): ask — bid, based on NYSE quotes when the order
was submitted. :

Time of Day: minutes past 9:30 a.M. This is the time the order was
submitted, given by the OTIME variable in TORQ. In estimating the
conditional relationships, we only included orders submitted between
9:30 A.M. and 4:00 p.M. if there was a good quote in effect. We found
that there was little pattern in residual price improvement (after con-
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trolling for changes in the quoted spread and depth) over the day. In
the evaluation of trading strategies, market quote data were sampled
as of 11:00 A.M.

Volatility: difference between the highest and lowest transaction
price over the last 6.5 hours of trading.

Volume: number of the firm’s shares traded over the last 6.5 hours
of trading.

Appendix B

In this appendix we discuss the local linear smoother in more de-
tail, present some smooths using the variable bandwidth local lin-
ear smoother, and sketch the steps necessary to implement the vari-
able bandwidth selection procedure. Recall that the span in the loess
smoother is checked by smoothing the residuals on the same condi-
tioning variables. We used the variable bandwidth local linear smoother’s
objective determination of bandwidth as an additional check of the
spans used in our univariate loess regressions.!?

Again let {Y;, X;}7, be a finite record of observations of price im-
provements and a conditioning variable. We assume that the finite
record is a sample from a stationary stochastic process that satis-
fies either strong mixing or p-mixing. The local linear smoother is
a kernel-based smoother developed recently by Fan (1992) and Fan
and Gijbels (1992). The local linear smoother at a grid point x, is
computed by minimizing

n 1 2

> Y,—Zﬂ,(xox»co X,/ a(x,)K( bn (Xt)>

i=1 j=

where K(-) is the kernel function and b, is the smoothing param-
eter or bandwidth.?° K determines the shape of the weights in the
weight function w;, and b, determines the size of the weights or
neighborhood.?! In theory the function @(X;) is an estimate of the
density of the regressors at the point x;. However, in practice the o
function is defined over grid points, not observations. It is more con-
venient to write the local linear smoother as a solution to a weighted

19 For a comparison of the local linear smoother and the loess smoother see Fan and Gijbels (1994).

2 Masry and Fan (1994) show how to conduct local polynomial estimation of regression functions
(of which the local linear smoother is a special case) using dependent data.

2 The variable b, is used to denote the dependence of the bandwidth » on the number of obser-
vations #.
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least-squares problem. Define the following:

(1 X — %)
X=|": : ;
\ 1 (X — x0)

(
y= .
\ Y

W = diag (@(X) K(((X; — %0)/ bn)a (X))
Then the solution to this problem is given by
Blxo) = (X'WX)T' X' Wy,
where B(x,) is given by

B(x0) = [Bo(x0), B ()],

and the estimated response function is given by

(o) = Bo(xo).

There are many possible choices for K. However, Gasser et al. (1985)
and Hirdle and Kelly (1987) have shown that on the basis of mean
square error, the choice of various kernels is not of primary impor-
tance. They suggest that the selection of the kernel be based on com-
putational efficiency. With this in mind, we use the kernel with a
parabolic shape and finite support known as the Epanechnikov ker-
nel, which is given by

K(u) = 0.7501 — u®)I(Ju| < 1).

In addition, Fan and Gijbels (1992) show that the Epanechnikov kernel
has larger minimax efficiency than the normal or uniform kernels.
While the choice of kernel is of secondary importance, the choice of
bandwidth is of primary importance. This is because the bias variance
trade-off is governed by the size of the bandwidth. That is, as the
bandwidth is increased (increasing the size of the neighborhood or
weights) this reduces the variance of the estimate but increases the
bias of the estimate (see the discussion in Section 2). The advantage
of the data driven bandwidth selection technique developed recently
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Local linear smooth of price improvement on excess depth for 1/4 spreads—variable
bandwidth selected by minimizing the integrated mean square error

Expected price improvement is measured in dollars per share. Excess depth is the difference
between quoted depth and the size of the order, where both are expressed as a fraction of the
average quoted depth for the firm. The points are individual observations from the TORQ sample.
To avoid obscuring the smooth from view, nearby points have been deleted.

by Fan and Gijbels (1994)%2 is that it allows the data to dictate the
optimal size of the bandwidth taking into account the bias variance
trade-off. In addition, the procedure allows one to select a variable
bandwidth even when an extremely large number of observations are
being used.?

Figure 6 shows fitted smooths and scatterplots of price improve-
ment as a function of excess depth for orders submitted at a 1/4 spread
using the variable bandwidth local linear smoother. The four panels
in the figure show the data and smooths for ASARCO, Boeing, and
Quantum Chemical, and the aggregate across all firms. Figure 7 con-
tains the same data for orders submitted at a 1/8 spread. Comparison

2 See Hirdle and Kelly (1987) for a discussion of bandwidth selection techniques.

2 Alternative procedures such as leave one cross-validation become computationally infeasible on
data sets of the size considered here.
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Local linear smooth of price improvement on excess depth for 1/8 spreads—variable
bandwidth selected by minimizing the integrated mean square error

Expected price improvement is measured in dollars per share. Excess depth is the difference
between quoted depth and the size of the order, where both are expressed as a fraction of the
average quoted depth for the firm. The points are individual observations from the TORQ sample.
To avoid obscuring the smooth from view, nearby points have been deleted.

of these figures to Figures 1 and 2 suggest that the loess smooth and
the variable bandwidth local linear smooth provide the same inter-
pretation of the relationship between price improvement and excess
depth.

The bandwidths for the smoothes in Figures 6 and 7 were computed
using the following procedure.

Step 1. Begin by partitioning up the interval over which the estima-
tion is to be conducted. Suppose the interval of estimation is denoted
by I = [k, Iy] and an arbitrary subinterval by I,. The smooths in
Figures 6 and 7 had five subintervals.

Step 2. For each Interval I, fit a third-order polynomial. Note that
the local linear smoother is a first-order polynomial. However, a third-
order polynomial is fit at this stage in order to extract curvature in-

formation from the data. The optimal bandwidth b is selected at this
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step by minimizing the integrated residual squares criterion given by

IRSC(bh) = f RSC(y; b) dy,

I

where RSC is defined as
RSC(xy; b) = 6%(x,)[1 4 2V],

and 62(x,) is the normalized weighted residual sum of squares given
by

1 2 N X; — x,
52 (x0) = Y (v - ¥Pk (——].
07 (%) tr{W — (XTWX)~1X7 W2X) 1.:1( = 1) b

V is the variance term and is given by the first diagonal element of
the matrix:

(XTwXxx) ' xXTw*x)(xTwx)™1}.

To understand the residual squares criterion note the following. The
conditional variance of B is given by

var(BXi, ..., BXn) ~ o2 (x (X WX) T (XTW2X)(XTwX)™).

The above equation implies that if the bandwidth is too large (i.e., big
h), then 62(x,) is large, since the residual sum of squares is large. On
the other hand, if » is too small the V is large. The residual squares
criterion bandwidth is then given by

b"3¢ = adjb,

where adj is an adjustment parameter that depends on the order
of polynomial being estimated and the choice of kernel.?* For the
Epanechnikov kernel and a third order polynomial this adjustment
parameter is given by .7776.

Step 3. Since step 2 is conducted for each interval I, step 2 pro-
duces a bandwidth step function. A “smoothed” bandwidth step func-
tion is produced by locally averaging. With this smoothed bandwidth
function, a third-order polynomial is used to estimate ﬁz(xo), /§3(xo),
and 6%(x,). These are the “pilot” estimates used as inputs to estimate
the mean square error.

Step 4. Given the estimates from step 3, a bandwidth is again se-
lected for each interval by minimizing the integral of the estimated

24 See Fan and Gijbels (1994).
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mean square errvor defined by
M3E (%o, b) = b* (%) + V(%0).

b(x,) is the estimated bias, which is given by (X7 WX) ™ (B25n2 +
Bssn.3), where s,, =2 (Xi— %) K (&hx—)) V(x,) is the estimated
variance term and is given by the first diagonal elemhent of the matrix:

XTwx) \(XTwW2x)(XTwX)"16 (x,).

Note that step 4 uses resulting estimates from step 3 to construct an
estimate of the mean square error. It is in this sense that they are pilot
estimates.

Step 5. Finally, smooth the resulting sequence of bandwidths (i.e.,
one for each interval) by local averaging. Then, using the smoothed
bandwidth function, fit a first-order polynomial (i.e., a local linear
smooth).

A constant bandwidth can be selected using this procedure by sim-
ply removing the actions related to partitioning up the interval. That
is, for a constant bandwidth it is not necessary to partition up the
interval of estimation since the bandwidth is the same over the range
of the data.
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