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The Predictive Power of “Head-and-Shoulders” Price Patterns in the U.S. Stock Market

Technical analysts use information about historical movements in price and trading

volume, summarized in the form of charts, to forecast future price trends in a wide variety of

financial markets. They argue that their approach to trading allows them to profit from changes

in the psychology of the market. This view is summarized in the following quotation:

The technical approach to investment is essentially a reflection of the idea that prices

move in trends which are determined by the changing attitudes of investors toward a variety of

economic, monetary, political and psychological forces… Since the technical approach is based

on the theory that the price is a reflection of mass psychology (“the crowd”) in action, it

attempts to forecast future price movements on the assumption that crowd psychology moves

between panic, fear, and pessimism on one hand and confidence, excessive optimism, and greed

on the other. (Pring, 1991, pp. 2–3).

The claims that technical trading rules can generate substantial profits are rarely, if ever,

subjected to scientific scrutiny by the technicians themselves. The many books and trading

manuals that have been written on the subject of technical analysis typically use a method of

description and anecdote. By contrast, early academic work testing the efficient market

hypothesis (Fama, 1965; Fama, 1970) concluded that there was no evidence that stock market

prices were predictable, and that therefore there was no substance to technical analysis.

However, more recent work has started to question the original findings. There is now

convincing evidence that stock prices display short term momentum over periods of six months

to a year and longer term mean reversion (De Bondt and Thaler, 1985; Chopra, Lakonishok and

Ritter, 1992; Jegadeesh and Titman, 1993). There is also evidence of economically significant

price reversals over short time horizons of a week to a month (Jegadeesh, 1990; Jegadeesh and
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Titman, 1995). This can be interpreted as providing support for a particular class of technical

trading rule that is designed to detect trends. Such rules have been shown to perform profitably

in foreign exchange markets (Dooley and Shafer, 1983; Sweeney, 1986; Levich and Thomas,

1993; Neely, Weller and Dittmar, 1997). 

There have been theoretical arguments advanced to explain these observed patterns of

momentum and reversal (Barberis, Shleifer and Vishny, 1997; Daniel, Hirshleifer and

Subrahmanyam, 1998). These arguments introduce various departures from fully rational

behavior, and carry the implication that investors using trading rules of the trend-following

variety may be able to profit from these departures from rationality. Other work has

demonstrated that even if all agents are rational there may be a role for technical analysis to play

(Treynor and Ferguson, 1985; Brown and Jennings, 1989; Blume, Easley and O'Hara, 1994). But

these papers are less specific about the type of technical indicator that will be profitable.

Much less academic attention has been paid to the use of technical signals based on price

patterns, despite the fact that these are widely used by practitioners. Osler and Chang (1999)

examine the profitability of using the “head-and-shoulders” pattern in the foreign exchange

market to predict changes of trend, and find evidence of excess returns for some currencies but

not others. Lo et al. (2000) develop a pattern detection algorithm based on kernel regression.

They apply this methodology to identifying a variety of technical price patterns including “head-

and-shoulders” in the U.S. stock market over the period 1962 - 1996. They find statistical

evidence that there is potentially useful information contained in most of the patterns they

consider.

The aim of this paper is to examine the methodology advocated in Lo et al. (2000), to

propose some modifications and to use the modified approach to assess the predictive power of a
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particular pattern. One of the difficulties that an academic investigator must face in assessing the

predictive power of price patterns is that the characterization of the patterns is sometimes

ambiguous and there may be disagreement among technical analysts themselves. For this reason,

we have chosen to focus on the head-and-shoulders (HS) pattern. There is a very general

consensus on the important features of this pattern, and it is also agreed that this is one of the

most reliable technical indicators.1

The occurrence of a technical price pattern is taken as a signal of a change or reversal in

a price trend. Therefore we concentrate on determining whether there is any evidence that a

pattern can predict the sign or magnitude of stock returns. We do not address the question of

whether a profitable trading strategy net of transaction costs exists. Rather, we take the view

expressed by Daniel, Hirshleifer and Teoh (2001, p.14) in analyzing patterns of return

predictability. They observe that some patterns seem to be profitable net of transaction costs and

some do not, and comment “In either case these patterns present a challenge for scientific

explanation, and are relevant for policy.” 

Lo et al. (2000), in contrast, do not focus on price predictability but rather consider the

question of whether there is any informational content in the occurrence of a pattern for the

whole conditional distribution of returns. While this is certainly of academic interest, it focuses

less directly on a test of the claims of technical analysis. We assess the predictive power of the

pattern over considerably longer time windows than do Lo et al. – one month, two months and

three months rather than one day. Again, our justification for doing this is that it accords better

with the practice of technical analysts.

As mentioned above, books written on technical analysis almost never contain any

attempt at statistical analysis. A recent exception to this general rule is the book Encyclopedia of

                                                
1 See Edwards and Magee (1992, pp.63-64) and Bulkowski (2000, p. 290).
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Chart Patterns (Bulkowski, 2000). Bulkowski uses a computer algorithm to search for a large

number of different types of pattern in a population of 500 stocks over the period 1991 to 1996.

As a practicing technical analyst he does not rely exclusively on the results of his computer

search, which naturally raises questions about data snooping. However, he reports statistics on

the patterns he identifies, including number of occurrences, average length of time from

initiation to completion of the pattern, failure rate and frequency distribution of returns after the

occurrence of a pattern. He also provides a number of examples of each pattern he considers.

Using these examples together with others taken from Bulkowski (1997) allows us to calibrate

the pattern detection algorithm implemented by Lo et al. and to supplement it with filters on the

assumption that the examples presented by Bulkowski are “typical”.

We examine the performance of the kernel smoothing algorithm alone, and supplemented

by the filters based on the examples of Bulkowski. We do this separately for Russell 2000 stocks

and for S&P 500 stocks over the period 1990-1999. For the first group, which is comprised of

smaller stocks, we find evidence of significant excess returns after the occurrence of a head-and-

shoulder pattern over one, two and three-month windows. For the second group, which consists

of stocks with relatively large capitalization, our findings are similar. Using the Fama-French

three factor model augmented by the addition of a momentum factor, we find that risk-adjusted

excess returns are economically and statistically significant over all time horizons, and seven to

nine per cent per annum over a three-month window.

I. Methodology and Procedures 

In this section, we describe the methodology used to identify HS patterns and the

procedure used to calculate the return conditional on detecting an HS pattern. Our methodology
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is a modification of that employed by Lo et al. (2000). As in Osler and Chang (1999), they use a

computer-based algorithm for selecting HS patterns where the patterns are defined by the

extrema of the price series. The distinctive contribution of Lo et al. (2000) is that they initially

smooth the price series using kernel mean regression.

A. Methodology of Lo et al.

A.1. Data Generation Process

The data consists of observations on prices of the stock, Pi, at integer values of time, Xi,

where Xi is the i-th tick of time, that is, Xi = i, 1 < i <T. This notation distinguishes the counter i

from the integer value that time takes on. In effect, they assume that the data are generated by a

fixed design model with a controlled nonstochastic X variable, which in this setup is time (Härdle

(1990)). Hence, 

Pi = m(Xi) + �i , 1< i <T,

where m(Xi) is a smooth function of time and the �i’s are independently and identically

distributed zero mean random variables with variance �2. The m(Xi) series can be interpreted as

the filtered or smoothed price series. Note that this model is observationally indistinguishable

from the case where the Pi’s are autocorrelated.

A.2. Rolling Windows

In practice, HS patterns identified by technical traders typically occur within a three-

month period.  The maximum allowable period is called a window and the span of the window is

denoted by n. Lo et al. (2000) analyze the data using rolling windows of span n = 38 trading

days.  That is, the price series is divided into successive, overlapping windows of 38 trading days

where the difference between the left limits of two adjacent windows is one trading day. In other

words, for any given window, the succeeding window starts and ends one business day later. The
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motivation for using rolling windows is twofold. One is that it approximately mimics the way in

which traders analyze the data. If windows did not overlap then the pattern recognition algorithm

would not detect any pattern initiated in one window and completed in the next. In contrast

traders in principle use all the historical price data as time unfolds. The other is that it

automatically constrains the maximum length of the HS pattern. 

A.3. Kernel Mean Regression

The price series within each window of span n is smoothed using a kernel nonparametric

regression. The kernel nonparametric estimator of the part of m(x) that lies within the i-th

window, i =1,…, T-n+1, is 
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that is often called the Nadaraya-Watson estimator.  K(�) is the kernel, a function which satisfies

certain conditions. In our estimation, K(�) is the standard normal density function. The

bandwidth, hi,n,, can be interpreted as a smoothing parameter. The higher the value hi,n, the

smoother the mi,n(x) function. In practice, the bandwidth parameter has to be chosen, which

implies that the bandwidth is generally different for different rolling windows. The method used

to select the bandwidth is the so-called “leave-one-out” method, which is also called cross-

validation. The details on kernel mean regression and bandwidth selection are found in Härdle

(1990).

A.4. Extrema

Given the smoothed price series mi,n(x) within a window, the extrema are identified by a

two-step procedure.  The first step is to find the extrema of the smoothed price series mi,n(x), and
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the second is to find the corresponding values of the original Pi series at the extrema in the first

step. For the purpose of exposition, we call the latter the relevant extrema. 

The extrema for the smoothed price series mi,n(x) are defined as follows. The point

mi,n(Xi) is a local maximum if mi,n(Xi-1) < mi,n(Xi) and mi,n(Xi)� mi,n(Xi+1). The inequalities are

reversed if mi,n(Xi) is a local minimum. If mi,n(Xi) is identified as a local extremum, then the

relevant extremum is defined on the interval from Pi-1 to Pi+1, which implies that it may differ

from Pi. 

Let E1, E2, …, Em denote the set of relevant extrema and X1*, X2*,…, Xm* the dates at

which these extrema occur. In Lo et al. (2000), an HS pattern consists of a set of five consecutive

relevant extrema which satisfy the following restrictions. 

(R1) E1 is a maximum.

(R2) E3>E1.

(R3) E3>E5.

(R4) E0.015EEmax ii
��� , i = 1, 5, where )/2.E(EE 51 ��

(R5) E0.015EEmax ii
��� , i = 2, 4, where )/2.E(EE 42 ��

In the restrictions, E1 is the left shoulder, E3 is the head and E5 is the right shoulder. (R4) and

(R5) restrict the distance between the height of the left and right shoulder and the left and right

trough; namely, E1 and E5 are within 1.5 percent of their average and E2 and E4 are within 1.5

percent of their average. Figure 1 illustrates the shape of a typical HS pattern with the extrema

labelled.
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B. Modifications

Our methodology for identifying HS patterns differs from Lo et al. (2000) in three

respects. The first involves the span of the rolling windows. We set the span at n = 63. This is

based on the number reported in Bulkowski for the average completion time of an HS pattern. 

The second concerns the bandwidth. The HS patterns are selected using four different

values of the bandwidth. The values of the bandwidth are multiples of hi, n, the bandwidth

obtained by the cross-validation method. The multiples are 1, 1.5, 2 and 2.5. The number and

type of HS patterns selected are sensitive to the magnitude of the bandwidth. The number of HS

patterns selected decreases substantially as the bandwidth increases. 

The third involves the restrictions on the relevant extrema. Technical trading manuals

suggest characteristics that HS patterns have to satisfy. The manuals generally agree on the form

of the restrictions (R1) to (R5).  On the basis of Bulkowski (2000), we recalibrate the Lo

restrictions (R4) and (R5) as follows. 

(R4a) E0.04EEmax ii
��� , i = 1, 5, where )/2.E(EE 51 ��

(R5a) E0.04EEmax ii
��� , i = 2, 4, where )/2.E(EE 42 ��

This allows a greater difference between the height of the two shoulders. It also allows the

neckline to be more steeply sloped where the neckline is the line joining E2 and E4.

Restrictions (R1) to (R5) do not capture all the features of an HS pattern of interest to

technical traders. We impose four additional restrictions:

(R6) 1 2 5 4

3 2 4

[(E - E ) + (E - E )]/2 0.7
E - (E + E )/2

� .

(R7) 1 2 5 4

3 2 4

[(E - E ) + (E - E )]/2 0.25
E - (E + E )/2

� .
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(R8) 3 2 4

3

[E -(E +E )/2] 0.03
E

� .

(R9)
***
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The restrictions (R6) to (R9) are calibrated using eleven examples of HS patterns reported in

Bulkowski ((1997), (2000)) that are completed within 63 trading days. We refer to (R4a), (R5a),

(R6), (R7), (R8) and (R9) as the Bulkowski restrictions.

 Restrictions (R6) and (R7) specify the average height of the shoulders as a proportion of

the height of the head from the neckline.  In particular, (R6) and (R7) combined with (R4a) and

(R5a) typically rule out cases where the height of the shoulders is a very large or very small

proportion of the height of the head. (R8) rules out cases where the height of the head from the

neckline is a small proportion of the stock price, and (R9) rules out extreme horizontal

asymmetries in the HS patterns. 

In addition, we impose the requirement that E5 occur at date n-3. This is a simple way to

capture the fact that the final extremum must be identified before concluding that an HS pattern

has been observed. 

C. Procedure for Calculating Conditional Excess Returns

 For each HS pattern detected, Lo et al. (2000) calculate the continuously compounded

return over one subsequent trading day. In technical trading manuals, substantially longer

horizons are considered. However, there is no clear consensus on the appropriate horizon.

Accordingly, we calculate the continuously compounded return over the subsequent 20, 40 and

60 trading days. 

Suppose that an HS pattern is detected in the i-th window. Then the return conditional on

observing an HS pattern is defined as 
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The usual assumption according to the claims of technical analysts is that the sign of the

conditional expected return is negative, and thus that a short sale is on average profitable. The

excess return is then calculated by subtracting the daily three-month Treasury bill rate

compounded continuously over the same holding period.

The conditional excess returns are calculated for two cases. The first is with restrictions

(R1) to (R3), (R4) and (R5), and the second is with (R1) to (R3), (R4a), (R5a), and (R6) to (R9).

In other words, they are calculated without and with the Bulkowski restrictions.

II. Data and Descriptive Findings

This section describes the empirical distributions of the conditional excess returns for all

stocks in the S&P 500 and the Russell 2000 indices. 

A.  Stock Market Data

The data sets are based on the price series for the companies in the S&P 500 and the

Russell 2000 over the period 1990-1999. The companies in the S&P 500 represent approximately

eighty-five percent of the total U.S. market capitalization. The Russell 2000 Index is based on

the 2000 smallest companies in the Russell 3000 Index, and represents approximately eight

percent of the total U.S. market capitalization. The companies in our S&P 500 and Russell 2000

data sets are the companies listed in the indices for June of 1990. In Figure 2 we present a time

series plot of the number of patterns terminating each quarter for the S&P 500, without imposing

the Bulkowski restrictions and using a bandwidth multiple of 2.5. No obvious trend or pattern is

discernible. The same is true of the plot for the Russell 2000 which is therefore omitted.

B.  Distributions of Conditional Excess Returns



11

B.1.  S&P 500

The main result for the 60-day excess returns is the following:

The mode of the empirical distribution is slightly positive. The mean is statistically

significantly negative, which is explained by the long left tail of the empirical

distribution.

This is illustrated in Figure 3. The figure presents the histogram and the kernel estimate of the

density of the excess returns with the Bulkowski restrictions for a bandwidth multiple of 2.5. The

histogram and the kernel estimate of the density are overlaid with a normal distribution that has

the mean and variance of the empirical distribution. The histograms and kernel estimates of the

density of the excess returns are very similar for 20 and 40 trading days and for smaller

bandwidth multiples. The same is true without the Bulkowski restrictions.

Table I reports the estimated means of the excess returns with and without the Bulkowski

restrictions. The results are for 20, 40 and 60 trading days and for the bandwidth multiples 1, 1.5,

2, and 2.5. The null hypothesis that the true means for excess returns with and without the

Bulkowski restrictions are zero is rejected by the asymptotic 95% confidence intervals for 20, 40

and 60 trading days as well as for all bandwidth multiples. The convention we have adopted

means that a negative excess return corresponds to a profitable trading strategy. The annual

excess returns over the three horizons are quite similar. Without the Bulkowski restrictions,

annual excess returns over 20, 40 and 60 days using a bandwidth multiple of 2.5 are 6.2, 6.2 and

5.8 per cent respectively. With the restrictions imposed, the corresponding figures are 5.8, 6.0

and 5.7 per cent.

B.2.  Russell 2000

The main result for the 60-day excess returns is the following:
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The mode of the empirical distribution is zero. The mean is statistically significantly

negative, which is explained by the slightly larger probability weight on small negative

values.

Unlike the rather skewed distributions of the excess returns for the S&P 500, the excess returns

for the Russell 2000 have much more symmetrical distributions. The sample variances are

slightly larger for the Russell 2000 than for the S&P 500. Figure 4 presents the histogram and the

kernel estimate of the density of the excess returns with the Bulkowski restrictions for a

bandwidth multiple of 2.5. The histogram and the kernel estimate of the density are overlaid with

a normal distribution that has the mean and variance of the empirical distribution. The

histograms and kernel estimates of the density of the excess returns are very similar for 20 and

40 trading days and for smaller bandwidth multiples. The same is true without the Bulkowski

restrictions.

Table II reports the estimated means of the excess returns with and without the

Bulkowski restrictions. The results are for 20, 40 and 60 trading days and for the bandwidth

multiples 1, 1.5, 2, and 2.5. The null hypothesis that the true means for excess returns with and

without the Bulkowski restrictions are zero is rejected by the asymptotic 95% confidence

intervals for 20, 40 and 60 trading days as well as for all the bandwidth multiples. Again, the

annual excess returns over the three horizons are quite similar. Without the Bulkowski

restrictions, annual excess returns over 20, 40 and 60 days using a bandwidth multiple of 2.5 are

5.7, 6.4 and 6.2 per cent respectively. With the restrictions imposed, the corresponding figures

are 5.4, 5.7 and 5.4 per cent. 

Confidence intervals reported in the tables for the sample means of S&P 500 and Russell

2000 were not corrected for the presence of autocorrelation and heteroskedasticity. The
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qualitative results were identical, when autocorrelation- and heteroskedasticity-consistent

covariance matrix estimators were used in the construction of the confidence intervals.

To provide some interpretation for these numbers, consider a strategy in which stocks are

randomly selected for short selling. The expected excess return would be the negative of the

equity premium, which over our sample period is 11.4 per cent per annum. Thus the difference in

return between random short selling and the HS strategy is of the order of seventeen per cent per

annum. This gives a strong initial indication that HS price patterns are indeed successfully

predicting changes in price trends. 

C.  Risk-Adjustment of the Excess Returns

The fact that we have demonstrated the existence of significant excess returns to an HS

trading strategy in itself provides no conclusive evidence that these returns are not simply

compensation for the risk involved. To test the hypothesis that HS patterns are able to predict

excess risk-adjusted returns, we use the Fama-French three-factor model. Although there is no

evidence to suggest that price momentum can be interpreted as a risk factor, we also include a

momentum factor for diagnostic purposes. 

We regress monthly returns to the HS trading strategy on the four factor returns plus a

constant. A detailed description of the construction of the monthly returns is contained in

Appendices I and II2. The selected results for the S&P500 are presented in Table III. The

asymptotic ninety five per cent confidence intervals are given for the intercept and factor

loadings. All of the confidence intervals for regression coefficients were calculated using

autocorrelation- and heteroskedasticity-consistent covariance matrix estimators. The results show

that the intercept is significantly negative for all three investment horizons and all values of the

                                                
2 Data on factor portfolio excess returns was obtained from Ken French’s web site.
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html)
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bandwidth multiple. With a trading horizon of three months, a bandwidth multiple of 2.5 and the

Bulkowski restrictions imposed, the intercept is – 0.78 per cent per month, or – 9.4 per cent per

annum. 

In order to interpret the factor loadings it is useful to have estimates of the factor risk

premia for our sample period. Since the factors are zero-wealth portfolios the risk premia are

equal to the sample means. For the market excess return, size, book-to-market and momentum

the annualized means in percent are respectively 11.4, – 2.5, – 0.6 and 12.1. Only the market and

momentum risk premia are significantly different from zero at the five per cent level. Given our

convention of reporting the profitable return to a short position as negative, the loading on the

market excess return reveals that the returns to the HS strategy (with profits measured as positive

returns) are negatively correlated with the market i.e. the HS strategy on average generates

profits when holding the market portfolio produces losses. This in turn indicates that the HS

strategy is successfully timing the market as a whole in the sense that profits from short sales

occur on average when the market is declining.

The loading on the size factor is much smaller and sometimes insignificant, and does not

play an important role. The loading on the book-to-market factor is larger and always significant.

But given that the factor risk premium is not significantly different from zero, again we conclude

that the factor does not play an important role in our results. The picture changes when we look

at the momentum factor. There is a significant loading on this factor which increases in absolute

magnitude with the trading horizon. The loading ranges from – 0.11 to – 0.21. The sign indicates

that momentum returns are positively correlated with HS returns (with profits measured as

positive returns). The momentum factor portfolio generates profits by taking long positions in

firms that have done well over the previous months two to twelve, and short positions in those
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that have done poorly over the same period. Since HS returns are generated by short sales, this

suggests that they can in part be explained by negative momentum i.e. taking short positions in

firms that have recently done poorly.

In Table IV we present the selected results of the four-factor regression for the Russell

2000. As in Table III, the ninety five per cent confidence intervals are presented for the intercept

and factor loadings. Again we find that the intercept is significantly negative for all horizons, all

bandwidths and with and without the Bulkowski restrictions imposed. Over a three-month

horizon with a bandwidth multiple of 2.5 and with the Bulkowski restrictions imposed, the

intercept is – 0.58 per cent per month or – 6.9 per cent per annum. The factor loading on the

market return is somewhat reduced and the loading on the size factor rises substantially. The

latter effect is to be expected since the Russell 2000 contains relatively small firms and the size

factor portfolio consists of a long position in small firms and a short position in large firms. The

loading on the momentum factor is significantly negative in all cases. Thus we find that all the

qualitative findings for the S&P500 carry over to the Russell 2000. All of the confidence

intervals for regression coefficients were calculated using autocorrelation- and

heteroskedasticity-consistent covariance matrix estimators.

We perform two further analyses. In the first we regress the HS excess returns on the

market factor alone. This may give a better measure of risk-adjusted returns given the

insignificant role played by the size and book-to-market factors, and the absence of a risk-based

explanation for the return to the momentum portfolio. The results are presented in Table V. For

the S&P 500 with a trading horizon of three months, a bandwidth of 2.5 and the Bulkowski

restrictions imposed the intercept is – 0.93 per cent per month or – 11.2 per cent per year. For the

Russell 2000 under the same conditions the intercept is – 0.85 per cent per month or – 10.2 per
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cent per year. The increase in excess return is largely accounted for by the contribution of the

momentum factor.

If we interpret the previous results within the framework of the CAPM rather than as an

application of an ad hoc factor model, it is possible that the obvious departure of the excess

returns from normality in Figures 3 and 4 may lead to unreliable inferences. In particular the

skewness in the distribution of returns for the S&P 500 indicates a pattern of a large number of

small losses outweighed by a small number of big gains. This in turn suggests that the strategy

generates a payoff similar to that of a put option. It is well-known that the standard CAPM is

unable to price options. However, Rubinstein (1976) demonstrates that an asset pricing model

derived under the assumption of constant relative risk aversion preferences may be used to price

arbitrary portfolios of state-contingent claims, and in particular options. Brown and Gibbons

(1986) use the model to estimate the coefficient of relative risk aversion and are unable to reject

the hypothesis that preferences are logarithmic. Since the stochastic discount factor for the log

CAPM is the inverse of the gross return on the market portfolio, mr1 , a simple prediction of the

model is that the HS excess return er must satisfy � � 0�m
e rrE . On the assumption that this ratio

is i.i.d. we test the hypothesis that its expected value is zero. The results of this test are reported

in the last column of Table V. In all cases the ratio is statistically significantly negative. Our

conclusions are thus shown to be robust to more general assumptions about the distribution of

security returns than those required for the standard CAPM.

One respect in which we must qualify our results stems from the fact that we ignore the

impact of dividends on the return to a short sale. In practice a short-seller is liable for any

dividend payments made during the period of the short sale. However, the dividend yield on the

S&P 500 averaged only 2.4 per cent per year over our sample period. This suggests that even
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after accounting for dividends the risk-adjusted return to HS trading remains economically

significant.

D.  Impact of Bulkowski Restrictions

Tables I and II give the number of HS patterns detected with and without the Bulkowski

restrictions. The results show that the number of patterns detected is substantially less when the

Bulkowski restrictions are imposed. For example, using the conditional returns of the Russell

2000 stocks, 1990-1999, for 60 trading days and a bandwidth multiple of 2.5, the number of HS

patterns detected drops from 13,569 to 9,483. This is a decrease of 30 per cent. However, it is

clear from Tables I and II that imposition of the restrictions has no impact on the excess returns.

When we consider risk-adjusted returns, again we find no effect of the restrictions on the

magnitude of the intercept in the factor regressions.

E. Distributions of Pattern Characteristics

We examined the empirical distributions of the pattern characteristics to evaluate the

effects of the restrictions (R4) to (R9) on number and type of HS patterns detected. The

distributions are illustrated in Figures 5, 6 and 7 for the Russell 2000 and a bandwidth multiple

of 2.5. Figure 5 shows that restrictions imposed by Lo et al. (2000), namely, (R4) and (R5) are

much more stringent than our restrictions, (R4a) and (R5a). By contrast, Figures 6 and 7 indicate

that restrictions (R6), (R7), (R8) and (R9) do not have substantial effects in eliminating potential

patterns. When the bandwidth is one, however, the effects of (R6) and (R7) are much more

pronounced. The effects of the restrictions are similar for the S&P 500 stocks. Patterns satisfying

restrictions (R4) and (R5) lie to the left of the verticals at 0.015 in Figure 5. Patterns satisfying

restrictions (R4a) and (R5a) lie to the left of the verticals at 0.04 in Figure 5. Patterns satisfying

restrictions (R6) and (R7) lie between the two verticals in the upper panel of Figure 6. Patterns
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satisfying (R8) lie to the right of the vertical in the lower panel of Figure 6. Finally, patterns

satisfying (R9) lie to the left of the vertical in Figure 7.

III. Conditional versus Unconditional Returns 

So far we have concentrated attention on the conditional mean of the distribution of

excess returns, both unadjusted and risk-adjusted. To provide additional information on the

performance of the HS trading strategy we examine the complete conditional distribution of

excess returns and compare it to the unconditional distribution. This comparison on its own is not

greatly informative. For example, there is an extensive literature documenting the fact that price

volatility is predictable. So a significant change in conditional distribution might simply reflect a

change in volatility of conditional returns. But coupled with our previous evidence that the HS

trading strategy produces significant risk-adjusted returns, it can give us useful information for

understanding how the HS strategy works. 

Lo et al. (2000) also compared the conditional versus the unconditional distributions of

returns. They made a comparison between the distribution of the post-HS pattern one-day returns

and the distribution of all of the one-day returns within the relevant five-year period. Also, they

normalized returns by subtracting the unconditional return and dividing by the unconditional

standard deviation. The two distributions were compared using the Kolmogorov-Smirnov (KS)

test and were found to be significantly different. However, if we focus on the means it is worth

noting that for Nasdaq stocks, only two out of their five-quintile groupings and three out of seven

of their five-year periods show a negative post-HS return. The signs are more consistently

negative for NYSE/AMEX stocks, but the mean one-day return for this group is only 3.8 per cent

of the daily standard deviation. 
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Our comparison of conditional and unconditional returns uses a different methodology.

The conditional returns are based on 20, 40 and 60-day post-HS pattern windows where the

patterns were those detected using a bandwidth of 2.5. To obtain the unconditional 20, 40 and

60-day returns with bandwidth 2.5 for each five-year period, we sample each stock for which an

HS pattern was detected, constraining the number of windows chosen to be equal to the number

of HS patterns detected for the stock. The sampling of the returns is done to make the size of

unconditional sample equal to that of conditional sample. Also, restricting the unconditional

returns to the stocks where the HS patterns were detected allows us to eliminate the across-the-

stocks variation in returns as one of the sources of differences between unconditional and

conditional distributions of the returns.

Figure 8 shows the quantile-quantile (QQ) plots for the Russell 2000 and S&P 500. The

quantiles of the conditional distribution are plotted against the quantiles of the unconditional

distribution. If the two distributions are the same, then the plot is a straight line with an angle of

45 degrees. As can be seen from the figures, the plots clearly depart from a straight line. The

difference is most striking in the case of the S&P 500. The QQ plot starts substantially below the

straight line, coincides with the straight line and then again eventually falls below it. This is

explained by the fact that the conditional distribution has more probability in the left tail and less

in the right tail than the unconditional distribution. The difference is less pronounced for the

Russell 2000, and the shift in probability weight does not seem to occur in the extreme left tail of

the distribution.

The QQ plots are functions that are subject to random variation due to sampling. In

particular, the unconditional distribution varies from replication to replication whereas the

conditional distribution remains fixed. However, the main features of the QQ plots remain the
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same across replications. The shape of the QQ plots reflects the difference of the skewness

coefficients of the conditional and unconditional distributions. For example, for the conditional

and unconditional distributions employed in Figure 8, the skewness coefficients are -1.16507 and

-0.84453 for the Russell 2000 and -2.87042 and 0.84214 for the S&P 500. As is revealed by the

plots, the difference in skewness is much more marked for the S&P 500. This suggests that, at

least for large stocks the HS pattern works by successfully predicting unusually steep price

declines for a relatively small number of stocks.

IV Summary and Conclusion

We develop an algorithm for the detection of HS patterns in stock prices. The algorithm,

as in Lo et al. (2000) is based on a non-parametric smoothing procedure used to detect particular

sequences of extrema in the price series. We augment these restrictions with additional ones

sufficient to characterize a set of typical examples of HS patterns identified by a technical

analyst (Bulkowski, 1997; Bulkowski, 2000). 

We consider the predictive power of the HS pattern for two groups of stocks, the S&P

500 and the Russell 2000, focusing explicitly on the mean excess return conditional on the

occurrence of the pattern over the subsequent one, two and three months. We concentrate on

evaluating mean return because technical trading manuals are unanimous in interpreting the

occurrence of HS patterns as a signal of an imminent decline in the stock price. There is less

agreement on the length of time over which the decline will occur. However Bulkowski (2000)

reports from his investigation of 431 HS patterns in 500 stocks over the period 1991 to 1996 that

the time taken to reach the ultimate low was on average three months. 
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For both groups of stocks, we find strong evidence that the pattern predicts a decline in

price relative to the market. The distribution of excess returns conditional on the occurrence of

an HS pattern tends to be skewed to the left and has a mean that is significantly negative. This

result is rather robust. It is not sensitive either to the horizon over which the return is calculated

or to the degree of data smoothing (governed by the magnitude of the bandwidth parameter).

Typical excess returns are between five and six per cent per annum. This provides a strong

indication that the HS strategy is successfully timing short sales, since a policy of purely random

short sales would earn the negative of the equity premium, which in our sample period is 11.4

per cent per annum.

We use the Fama-French three-factor model augmented with a momentum factor to

determine whether these results survive adjustment for factor risk. We find strong evidence of an

economically and statistically significant intercept of between seven and nine per cent per year

for both S&P 500 and Russell 2000 stocks. This rises to between ten and eleven per cent per year

when the effect of the momentum factor is ignored.

This is the first time that the HS pattern has been shown to have economically significant

predictive value for stock market returns. The evidence is consistent with the use of technical

price patterns as a guide to trading decisions. The skewness in the conditional returns provides an

explanation for the exaggerated claims made by the advocates of technical trading. Bulkowski,

for example, reports that only seven per cent of the patterns he identified were not followed by a

price decline, and that the average price decline conditional on a successful prediction was

twenty three per cent. There is no reason to doubt that claims of this kind can be supported by

judicious data mining. Our results suggest that technical analysis based on HS patterns may

produce more modest, but still substantial risk-adjusted excess returns in the range of 7–9
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percent per annum, leaving aside transaction costs. The finding that such price patterns have

predictive power for future returns is one for which at present there is no satisfactory theoretical

explanation.
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Table I

Means, Variances and Confidence Intervals of Conditional Excess Returns: 
S&P 500, 1990-1999
The table reports the means, variances and confidence intervals for the excess returns conditional on detecting an HS
pattern when the span of the rolling windows is n = 63. The reported returns are 20, 40 and 60 day returns. A
negative excess return corresponds to a profitable HS trading strategy.

Trading Bandwidth 95 % Confidence Interval Number
Days Multiple Mean Variance Lower Upper of patterns

Without Bulkowski restrictions

20 1 -0.00187 0.01211 -0.00338 -0.00035 20405
1.5 -0.00182 0.01161 -0.00357 -0.00007 14558
2 -0.00389 0.01260 -0.00608 -0.00170 10096
2.5 -0.00515 0.01410 -0.00796 -0.00235 6860

40 1 -0.00698 0.02432 -0.00912 -0.00484 20405
1.5 -0.00752 0.02350 -0.01001 -0.00502 14558
2 -0.00927 0.02445 -0.01232 -0.00623 10096
2.5 -0.01027 0.02619 -0.01410 -0.00644 6860

60 1 -0.01363 0.03702 -0.01627 -0.01101 20405
1.5 -0.01473 0.03572 -0.01780 -0.01165 14558
2 -0.01483 0.03656 -0.01856 -0.01110 10096
2.5 -0.01460 0.03779 -0.01920 -0.01001 6860

With Bulkowski restrictions

20 1  0.00022 0.01159 -0.00165 0.00208 12732
1.5 -0.00045 0.01111 -0.00254 0.00164 9770
2 -0.00397 0.01232 -0.00659 -0.00136 6894
2.5 -0.00487 0.01471 -0.00834 -0.00141 4693

40 1 -0.00532 0.02434 -0.00803 -0.00261 12732
1.5 -0.00576 0.02320 -0.00878 -0.00275 9770
2 -0.00909 0.02483 -0.01281 -0.00538 6894
2.5 -0.01004 0.02699 -0.01474 -0.00535 4693

60 1 -0.01187 0.03653 -0.01519 -0.00856 12732
1.5 -0.01382 0.03595 -0.01758 -0.01007 9770
2 -0.01457 0.03732 -0.01913 -0.01002 6894
2.5 -0.01434 0.03804 -0.01992 -0.00875 4693
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Table II

Means, Variances and Confidence Intervals of Conditional Excess Returns: 
Russell 2000, 1990-1999
The table reports the means, variances and confidence intervals for the excess returns conditional on detecting an HS
pattern when the span of the rolling windows is n = 63. The reported returns are 20, 40 and 60 day returns. A
negative excess return corresponds to a profitable HS trading strategy.

Trading Bandwidth 95 % Confidence Interval Number
Days Multiple Mean Variance Lower Upper of patterns

Without Bulkowski restrictions

20 1 -0.00556 0.01873 -0.00679 -0.00432 47563
1.5 -0.00566 0.01803 -0.00714 -0.00418 31624
2 -0.00491 0.01732 -0.00671 -0.00312 20534
2.5 -0.00477 0.01772 -0.00701 -0.00253 13569

40 1 -0.01043 0.03835 -0.01219 -0.00868 47563
1.5 -0.01171 0.03735 -0.01384 -0.00958 31624
2 -0.01014 0.03530 -0.01271 -0.00756 20534
2.5 -0.01060 0.03572 -0.01378 -0.00744 13569

60 1 -0.01618 0.05992 -0.01838 -0.01398 47563
1.5 -0.01846 0.05781 -0.02111 -0.01582 31624
2 -0.01529 0.05508 -0.01850 -0.01207 20534
2.5 -0.01544 0.05623 -0.01943 -0.01146 13569

With Bulkowski restrictions

20 1 -0.00479 0.02036 -0.00633 -0.00326 32986
1.5 -0.00473 0.01812 -0.00650 -0.00296 22223
2 -0.00449 0.01779 -0.00667 -0.00231 14382
2.5 -0.00454 0.01826 -0.00726 -0.00182 9483

40 1 -0.01001 0.04043 -0.01218 -0.00784 32986
1.5 -0.01079 0.03762 -0.01334 -0.00825 22223
2 -0.00958 0.03644 -0.01270 -0.00647 14382
2.5 -0.00949 0.03659 -0.01334 -0.00563 9483

60 1 -0.01550 0.06353 -0.01822 -0.01278 32986
1.5 -0.01707 0.05850 -0.02025 -0.01388 22223
2 -0.01433 0.05665 -0.01822 -0.01044 14382
2.5 -0.01338 0.05831 -0.01824 -0.00852 9483
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                  Table III

Regression Coefficients and Confidence Intervals in the Four-Factor Regression: 
S&P 500, 1990-1999
The table reports the regression coefficients and their 95% confidence intervals in the four-factor linear regression, where the
dependent variables consist of monthly excess returns conditional on detecting an HS pattern when the span of the rolling
windows is n = 63. The returns are reported for 20 and 60-day windows. The bandwidth parameter given in the first column is
either 1 or 2.5. Autocorrelation- and heteroskedasticity-consistent standard errors are used to construct the confidence intervals.

Intercept Excess Market Size Factor Book-to-Market Momentum
Return Factor Factor Factor

20 days
Without Bulkowski Restrictions

1 -0.00325 0.43841 0.06831 0.15082 -0.11761
(-0.0051;-0.0014) (0.3771;0.4805) (0.0128;0.1191) (0.0559;0.2421) (-0.1949;-0.0362)

2.5 -0.00515 0.48119 0.11605 0.21678 -0.1181
(-0.0086;-0.0017) (0.4187;0.5295) (0.0466;0.1880) (0.0847;0.3468) (-0.1930;-0.0337)

With Bulkowski Restrictions

1 -0.00208 0.42697 0.05045 0.12846 -0.12218
(-0.0041;-0.0010) (0.3522;0.4837) (-0.0053;0.1033) (0.0324;0.2205) (-0.2017;-0.0389)

2.5 -0.00545 0.49243 0.14128 0.25114 -0.11205
(-0.0089;-0.0021) (0.4225;0.5497) (0.0434;0.2397) (0.0960;0.4004) (-0.1985;-0.0238)

 60 days
Without Bulkowski Restrictions

1 -0.00687 0.70817 0.05958 0.24777 -0.21417
(-0.0084;-0.0054) (0.6186;0.7880) (-0.0096;0.1268) (0.1321;0.3614) (-0.2892;-0.1334)

2.5 -0.00724 0.7111 0.09378 0.23747 -0.17089
(-0.0092;-0.0052) (0.5999;0.8123) (0.0175;0.1679) (0.1239;0.3510) (-0.2497;-0.0895)

With Bulkowski Restrictions

1 -0.00617 0.70654 0.05619 0.23302 -0.2146
(-0.0078;-0.0045) (0.6103;0.7941) (-0.0122;0.1226) (0.1090;0.3551) (-0.2913;-0.1324)

2.5 -0.00782 0.7325 0.12152 0.24927 -0.15985
(-0.0098;-0.0058) (0.6141;0.8422) (0.0096;0.2313) (0.1048;0.3934) (-0.2337;-0.0829)
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                     Table IV

Regression Coefficients and Confidence Intervals in the Four-Factor Regression: 
Russell 2000, 1990-1999
The table reports the regression coefficients and their 95% confidence intervals in the four-factor linear regression, where the
dependent variables consist of monthly excess returns conditional on detecting an HS pattern when the span of the rolling
windows is n = 63. The returns are reported for 20 and 60-day windows. The bandwidth parameter given in the first column is
either 1 or 2.5. The autocorrelation- and heteroskedasticity-consistent errors are used to construct the confidence intervals.

Intercept Excess Market Size Factor Book-to-Market Momentum
Return Factor Factor Factor

20 days
Without Bulkowski Restrictions
1 -0.0042 0.40425 0.39591 0.11151 -0.08485

(-0.0052;-0.0030) (0.3301;0.4577) (0.3233;0.4481) (0.0558;0.1609) (-0.1311;-0.0382)

2.5 -0.00421 0.40099 0.41233 0.1744 -0.08396
(-0.0061;-0.0022) (0.3377;0.4487) (0.3460;0.4646) (0.1013;0.2377) (-0.1370;-0.0278)

With Bulkowski Restrictions

1 -0.00362 0.40765 0.41604 0.10774 -0.10899
(-0.0047;-0.0024) (0.3279;0.4667) (0.3394;0.4721) (0.0490;0.1604) (-0.1571;-0.0590)

2.5 -0.00419 0.4109 0.40921 0.16852 -0.08878
(-0.0063;-0.0019) (0.3335;0.4708) (0.3434;0.4563) (0.0780;0.2480) (-0.1618;-0.0102)

60 days
Without Bulkowski Restrictions

1 -0.0066 0.64402 0.5647 0.24114 -0.17242
(-0.0080;-0.0051) (0.5377;0.7348) (0.4644;0.6504) (0.1516;0.3244) (-0.2540;-0.0832)

2.5 -0.00653 0.62365 0.6018 0.31138 -0.1545
(-0.0085;-0.0046) (0.5489;0.6873) (0.5199;0.6728) (0.2046;0.4148) (-0.2538;-0.0487)

With Bulkowski Restrictions

1 -0.00644 0.65627 0.59368 0.23483 -0.18831
(-0.0079;-0.0050) (0.5500;0.7479) (0.4926;0.6785) (0.1424;0.3220) (-0.2649;-0.1056)

2.5 -0.00576 0.63018 0.6197 0.28328 -0.14637
(-0.0079;-0.0037) (0.5517;0.6969) (0.5548;0.6728) (0.1841;0.3803) (-0.2376;-0.0472)
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                     Table V

Regression Coefficients and Confidence Intervals in the One-Factor Regression: 
S&P 5000 and Russell 2000, 1990-1999
The table reports the regression coefficients and their 95% confidence intervals in the one-factor linear regression, where the
dependent variables consist of monthly excess returns conditional on detecting an HS pattern when the span of the rolling
windows is n = 63. The returns are reported for 20 and 60-day windows. The bandwidth parameter given in the first column is
either 1 or 2.5. The ratio test reports the 95% confidence interval for � �m

e rrE  which is zero for the log CAPM.
Autocorrelation- and heteroskedasticity-consistent standard errors are used to construct the confidence intervals.
       

Intercept Excess Market Ratio Test Intercept Excess Market Ratio Test
Return Factor  Return Factor

       
S&P 500 Russell 2000

20 days 20 days
Without Bulkowski Restrictions

1 -0.0042 0.3901 (-0.0011;-0.0011) -0.0061 0.403 (-0.0029;-0.0029)
(-0.0059;-0.0024) (0.3216;0.4586) (-0.0089;-0.0032) (0.3125;0.4935)

2.5 -0.0061 0.4195 (-0.0028;-0.0028) -0.006 0.3847 (-0.0029;-0.0029)
(-0.0089;-0.0032) (0.3408;0.4981) (-0.0089;-0.0030) (0.2982;0.4712)

With Bulkowski Restrictions

1 -0.0031 0.3847 (-0.0001;-0.0001) -0.0058 0.4102 (-0.0026;-0.0026)
(-0.0048;-0.0014) (0.3047;0.4647) (-0.0087;-0.0030) (0.3097;0.5107)

2.5 -0.0063 0.4236 (-0.0030;-0.0030) -0.006 0.3952 (-0.0029;-0.0029)
(-0.0094;-0.0033) (0.3279;0.5192) (-0.0088;-0.0032) (0.2924;0.4979)

60 days 60 days
Without Bulkowski Restrictions

1 -0.0088 0.6167 (-0.0034;-0.0034) -0.0095 0.6251 (-0.0041;-0.0041)
(-0.0117;-0.0058) (0.4894;0.7440) (-0.0139;-0.0050) (0.4633;0.7869)

2.5 -0.0088 0.6289 (-0.0034;-0.0033) -0.0092 0.5872 (-0.0041;-0.0041)
(-0.0113;-0.0062) (0.4885;0.7693) (-0.0140;-0.0044) (0.4435;0.7310)

With Bulkowski Restrictions

1 -0.0081 0.6204 (-0.0028;-0.0027) -0.0096 0.6434 (-0.0037;-0.0037)
(-0.0111;-0.0051) (0.4897;0.7510) (-0.0142;-0.0050) (0.4786;0.8081)

2.5 -0.0093 0.6511 (-0.0037;-0.0037) -0.0085 0.606 (-0.0033;-0.0032)
(-0.0123;-0.0063) (0.4956;0.8065) (-0.0130;-0.0039) (0.4679;0.7442)
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Figure 1 The head-and-shoulders pattern

Figure 2 Quarterly occurrences of head-and-shoulders patterns for the S&P 500: 1990-
1999
The figure records the number of head-and-shoulders patterns terminating each quarter, without
imposing the Bulkowski restrictions and using a bandwidth multiple of 2.5.
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Figure 3. Conditional excess returns for S&P 500, 1990-1999, with the Bulkowski
restrictions. The returns are for 60 trading days and a bandwidth multiple of 2.5. The vertical
line in the kernel density represents the mean of the empirical distribution. The graphs are
overlaid with a normal (solid line) that has the mean and variance of the empirical distribution.
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Figure 4. Conditional excess returns for the Russell 2000, 1990-1999, with the Bulkowski
restrictions. The returns are for 60 trading days and a bandwidth multiple of 2.5.  The vertical
line in the kernel density represents the mean of the empirical distribution. The graphs are
overlaid with a normal (solid line) that has the mean and variance of the empirical distribution.
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Figure 5. Empirical distributions of the pattern characteristics restricted in (R4) and (R4a)
and in (R5) and (R5a). These restrict the distance between the height of the left and right
shoulder and the left and right trough. The left-hand vertical is at 1.5 percent, the value in (R4)
and (R5), and the right-hand vertical is at 4 percent, the value in (R4a) and (R5a). The
distributions are based on the patterns detected for the Russell 2000, 1990-1999, with a
bandwidth multiple of 2.5.
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Figure 6. Empirical distributions of the pattern characteristics restricted in (R6), (R7) and
(R8). The top figure combines restrictions (R6) and (R7), which specify the average height of the
shoulders as a proportion of the height of the head from the neckline. In particular, (R6) and (R7)
combined with (R4a) and (R5a) typically rule out cases where the height of the shoulders is a
very large or very small proportion of the height of the head. (R8) rules out cases where the
height of the head from the neckline is a small proportion of the stock price. The distributions are
based on the patterns detected for the Russell 2000, 1990-1999, with a bandwidth multiple of
2.5.
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Figure 7. Empirical distributions of the pattern characteristics restricted in (R9). (R9) rules
out extreme horizontal asymmetries in the HS patterns. The distributions are based on the
patterns detected for the Russell 2000, 1990-1999, with a bandwidth multiple of 2.5.
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Figure 8. Quantile-Quantile Plot of Conditional and Unconditional Returns, 1990-1999. The
conditional returns are calculated over a 60-day window after an HS pattern is observed. The HS
patterns are selected using the Bulkowski restrictions and a bandwidth multiple of 2.5. The
unconditional returns are calculated from a stratified sample of 60-day returns. The quantiles are
plotted in one percent increments. The straight line represents the case where the two
distributions are identical.
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Appendix I:  Calculation of HS monthly returns

The calculation of monthly returns from the short positions is complicated by the fact that

the majority of the positions start on dates that are different from the end or beginning of a

particular month. However, the excess returns for the factor portfolios are monthly returns.

The calculation uses the following input data: the index of the business day on which the

short position was opened and closed, the price data for the given stock, and the daily 3-month

Treasury bill rate. Given the price of the stock at the starting date of the short position jiP , ,

where i denotes the month and j denotes the day of the month, we find the continuously

compounded return for that particular month using the following formula:
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where endiP ,  denotes the price on the last business day of month i. The excess return e
jir , is found

as follows:

�
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end
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e
ji rrr ,, , (A.2)

where tr  is the daily 3-month Treasury bill rate continuously compounded and end denotes the

last business day of the month. Appropriate adjustment in compounding the risk-free rate is

made for non-business days. Note the convention that a profitable trade is associated with a

negative excess return.

If the short position is two or three months long, it will span three or four months. The

monthly returns for the months that are fully spanned by the short position are calculated using

the following formula:
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The excess return is found as follows:
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For the majority of short positions, the ending date of the short position will be different

from the last day of a given month. To find the return from the tail end of the short position, i.e.,

for the time period from the beginning of the last month until the date when the short position is

closed, we use the following formula:
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where jiP ,  is the price at which the short position is closed.

The excess return is found as follows:
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The following is a derivation of the above formula. The notional price at which the short

position is opened is endiP ,1� . This is therefore the notional cash inflow from opening the short

position. A cash outflow of jiP ,  occurs on day j. To calculate the monthly return we need to

compound these two positions to the end of the month. Therefore the excess return on these two

positions is:
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Finally, the average excess return is calculated for any given month by summing up all

the excess returns from short positions for that given month across all companies and then

dividing through by the number of such returns.   

Appendix II:  Construction of the Risk Factor Portfolios and the Momentum Portfolio

The following description of the construction of the risk factors is based on that in Fama and

French (1993).

The Fama-French benchmark factors are the excess return on the market (Rm-Rf), the

size factor (Small-Minus-Big, SMB), and the book-to-market (B/M) factor (High-Minus-Low,

HML).

Rm-Rf, the excess return on the market, is the value-weighted return on all NYSE,

AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from

Ibbotson Associates).

To construct the size and B/M factors all NYSE, AMEX, and NASDAQ stocks are split

into two groups, small (S) and big (B), in June of year t based on the median size of a firm on

NYSE. They are separately split into three groups, high (H), medium (M) and low (L), based on

book equity/market equity at the end of year t – 1. Six size/book-to-market portfolios are formed

from these separate groups. Monthly value-weighted returns are calculated on the six portfolios

from July of year t to June of year t + 1.

SMB is the average return, calculated monthly on the three small portfolios minus the

average return on the three big portfolios. HML is the average return, calculated monthly on the

two high B/M portfolios minus the average return on the two low B/M portfolios.
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The momentum factor UMD (Up-Minus-Down) is constructed using six value-weighted

portfolios formed on size and prior returns.3 The portfolios, which are formed monthly are the

intersections of two portfolios formed on size and three portfolios formed on return over the

period from twelve months to two months previously. The monthly size breakpoint is the median

NYSE market equity. The monthly prior (2-12) return breakpoints are the 30th and 70th NYSE

percentiles. UMD is the average return on the two high prior return portfolios minus the average

return on the two low prior return portfolios.

                                                
3 This description is taken from Ken French’s web site:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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